Utveckling av portföljstrategier baserade på svagt kointegrerade finansiella instrument med AdaBoosting. Helena Nilsson

Storlek: px
Starta visningen från sidan:

Download "Utveckling av portföljstrategier baserade på svagt kointegrerade finansiella instrument med AdaBoosting. Helena Nilsson"

Transkript

1 Uveckling av porföljsraegier baserade på svag koinegrerade finansiella insrumen med AdaBoosing Helena Nilsson Februari 15, 2009

2

3 Absrac Financial analyss are consanly rying o find new rading sraegies in order o increase heir revenue. In recen years heories involving mean-revering have grown o be successful and especially pairs rading. However, in ime hese models become well-known and commonly used, which will decrease he revenue and ulimaely he models become harder o maser. In ha case, one migh use more advanced echniques and sraegies o combine he characerisics of he spread in addiion o mean-revering echniques o find rading sraegies wih a more sable ou-of-sample resul. This maser hesis examines if he AdaBoos algorihm can help creae porfolios wih sable revenue. The hesis explains how he ensemble learning algorihm AdaBoos is ransformed ino an opimizing algorihm which efficienly combines differen qualiies of he spread ino a rading sraegy. Firs he hesis gives a shor presenaion of he AdaBoos algorihm and laer describes how he algorihm is implemened due o chosen rading signals. Then he rading sraegy is rained and esed on differen sock indexes. Finally he resul of he rading sraegy is presened; i shows posiive revenue on esed sock indexes. i

4

5 Sammanfaning Finansanalyiker försöker sändig hia nya modeller och handelssraegier för a öka sin avkasning. På senare år har eorier som bygger på mean-revering ekniker blivi populära och speciell pairs rading. Eferhand blir dessa modeller kända och välanvända och då minskar avkasningen och de blir all svårare a bemäsra. För a moverka dea vingas man därför a uveckla mer avancerade sraegier som kan kombinera och använda sig av andra egenskaper hos spreaden, uöver mean-revering, för a hia en handelssraegi som ger sabila ou-ofsample resula. Dea examensarbee undersöker hur man med hjälp av AdaBoos algorimen kan skapa porföljer med sabil avkasning. Rapporen beskriver hur klassificeringsalgorimen AdaBoos görs om ill en opimeringsalgorim som genom a kombinera flera olika egenskaper hos spreaden effekiv kan a fram en opimal handelssraegi. I rapporen görs en korfaad presenaion av AdaBoosen algorimen för a sedan beskriva implemeneringen av algorimen med hänsyn ill valda handelssignaler. Tillslu ränas och esa handelssraegin på undersöka akieindex och resulae preseneras. För den undersöka perioden uppvisar handelssraegin e posiiv riskjusera resula. ii

6 Förord Dea examensarbee har gjor inom inrikningen finansiell maemaik på Maemaik Insiuionen vid Kungliga Tekniska Högskolan. Examensarbee omfaar 30 poäng och har uförs på Försa AP-fonden. Jag vill rika sor ack ill min handledare Peer Raicevic på Försa AP-fonden. Jag vill också acka min examinaor Timo Koski vid KTH. Sockholm den 15 februari 2009 Helena Nilsson iii

7 Innehåll 1 Inledning Bakgrund Problemformulering Avgränsningar Disposiion Teori Koinegraion Pairs Trading Sandard AdaBoosen Simulaed Annealing Meod Daa Beräkning Handelssraegi Generaliserad AdaBoos Handelssignaler EMA Mean Reverse Sokasisk sökalgorim Resula Avkasningsberäkning In-sample resula från daamängd Resula från räningsperioden Resula från AdaBoosen Resula från esperioden Ou-of-sample resula Ou-of-sample resula för daamängd Ou-of-sample resula för daamängd Ackumulerad avkasning Boosrap meoden Analys Analys av in-sample resulae Analys av ou-of-sample resulae Slusas Referenslisa iv

8 1 Inledning Dea kapiel börjar med en bakgrund ill behove av nya handelssraegier. Efer de kommer problemformulering och avgränsningar a preseneras. Till sis, ges uppsasens disposiion. 1.1 Bakgrund På senare år har ekniker som bygger på mean-revering och speciell pairs rading blivi allmer populära. Till följd av dea har ypiska par och mängder av koinegrerade insrumen blivi välkända, vilke leder ill a felprissäningar försvinner från marknaden. Anale ouppäcka fungerande kombinaioner minskar krafig och dea minskar chansen ill posiiv avkasning. Därför srävar man efer a uveckla nya handelssraegier som unyjar a spreaden har andra egenskaper uöver mean-revering så som muli-scale render och andra komplexa dynamiker. Genom a använda en mer allmän handelssraegi som kan handla med flera olika yper av komplexa spreadidsserier försöker man öka sin avkasning och sabilieen hos ou-of-sample-resulae jämför med resulae hos pairs rading. 1.2 Problemformulering De här examensarbee har som uppgif a undersöka om de går a använda en handelsmeod baserad på AdaBoos-algorimen, isälle för den förhärskade mean-revering meoden. AdaBoos är en inlärningsalgorim som uppmunrar nya modeller a bli experer på områden som redan använda modeller ine är så bra på. Den grundläggande idén är a algorimen kombinerar relaiv enkla bashypoeser/modeller ill en slugilig förusägelse, en sark basmodell. En mer ingående förklaring av AdaBoosen finns under kapiel 2.3. Examensarbee baseras på ariklarna [9] och [13] som undersöker om AdaBoos-algorimen kan användas i handelssammanhang. Ariklarna esar handelsmodellen på vå akieindex, S&P mid-cap (MID) och S&P 500 index (SPX) vilke resulerar i en posiiv riskjuserad avkasning under den i ariklarna undersöka idsperioden. Dea examensarbee har ill uppgif a skapa en liknande handelsmodell som i arikeln, sam a esa den på andra marknader. Precis som i ariklarna kommer examensarbee a använda sig av daabryning, dvs. vi söker efer en bäsa lösning på hisoriska daa. De parameerinsällningarna som fås fram kommer senare a användas för a uvärdera handelsmodellen på yerliggare marknader. Examensarbee vill undersöka om AdaBoos-algorimen är en lönsam sraegi vid akiehandel. 1

9 1.4 Avgränsningar Dea examensarbee behandlar vå olika daamängder. Den försa daamängden besår av vå sycken akieindex och den andra daamängden besår av 10 sycken akieindex. Dessa 10 kommer a paras ihop slumpmässig. Av idsskäl hinner jag bara analysera 14 sycken av dessa par. Reserande akieindexpar lämnas ill yerligare analys av handelsmodellen. Uppsasen ar ine hänsyn ill de kosnader som uppsår vid uförande av sraegin, ill exempel ransakionskosnader. 1.5 Disposiion Uppsasen är indelad i sex kapiel. Efer inledningskapile behandlas eori och redogörs för idigare forskning. I kapiel re beskrivs hur daa inhämas, behandlas och vilken meod som använs. De fjärde kapile innehåller resulae, i de feme analyseras resulae och i de sisa kapile redovisa slusaser sam ges förslag på vidareuveckling av examensuppgifen. 2

10 2 Teori Nedan redogörs för några befinliga modeller som finns för beräknande av porföljsraegier. Sedan redogörs för AdaBoos algorimen, den algorim som dea examensarbee bygger på. Kapile ar också upp Simulaed Annealing, en opimeringsalgorim som kan användas för opimering av porföljer. 2.1 Koinegraion Koinegraion handlar om relaioner mellan idsserier. A vå idsserier är koinegrerade beyder a de finns e långsikig samband mellan dem. Tidsserierna följer varandra, men de behöver ine följa varandra synkron varje dag uan de kan under korare perioder vandra iväg i olika rikning förusa a de inom kor åerkommer ill e jämviksläge [1]. Den mes populära meoden för a esa om koinegraion förekommer är OLE (Ordinary Leas Square) regression vilken har uvecklas av Engler och Granger. E primär krav är a idsserierna är icke-saionära av samma grad [4]. För a förså begreppe koinegraion måse man därför förs förså skillnaden mellan en saionär och en icke-saionär idsserie. De gör man läas genom a ia på definiionen för en saionär (svag saionär) idsserie, Y som enlig [2] definieras av: 1. E Y ) = µ ( Var ( Y ) E Y µ = σ < = 2. ( ) 2 3. Y, Y ) ( h 2 Cov + = γ E [( Y µ )( Y µ )] h = +h Enlig punkerna 1 och 2 ska en saionär idsseries förvänade medelvärde och varians vara konsana och oberoende av iden. Punk 3 kräver a kovariansen mellan vå Y-värden är densamma oberoende av vilke Y-värde man använder som ugångspunk. I prakiken beyder dea a om man chockar en saionär idsserie så kommer chocken ine ge några permanena effeker på idsserien uan idsserien kommer inom kor a åergå ill si jämviksläge. A chocka en idsserie avser både negaiva och posiiva händelser som påverkar värde på idsserien. Sörre och krafigare chocker på idsserien ger upphov ill sörre volailie än om chockerna vari mindre krafiga. Många makroekonomiska idsserier är icke saionära och på dessa idsserier ger en evenuell chock permanena effeker [3]. Då de re ovansående kraven ine uppfylls är den akuella idsserien ickesaionär vilke gör a regressionsresula ine är påliliga vid hypoesprövningar och a påvisade samband mellan idsserierna kan bero på falsk regression pga. renden [4]. Med falsk regression menas a de saisiska eserna, - och F-eser, ger felakig uslag på grund av a renden gör a de finns samband mellan variablerna som egenligen ine exiserar. Prognoser av esen är ine heller illförliliga efersom prognosmodeller anar a chocker är emporära när de egenligen är permanena. 3

11 För a få buk med dea har man uveckla meoder för a omvandla ickesaionära idsserier ill saionära. Dea görs genom differeniering enlig formeln: y = y y 1 Icke-saionära och saionära idsserier beecknas I(d), där d sår för anale differenieringar som krävs för a en icke-saionär idsserie ska blir saionär. I prakiken är de flesa makroekonomiska idsserier av graden I(1) och behöver därför differenieras en gång [1]. Genom a uföra e Dickey-Fuller (DF) es kan man undersöka huruvida respekive serie är saionär [1]. Tese ugår ifrån en modell där serien y besäms av: y y + s + 1 = α + β y är värde vid idpunken +1 som genom regression relaeras ill värde på y vid idpunken innan, dvs. och s är en felerm [5]. Om β=1 har den akuella idsserien en enhesro (eng. uni roo) vilke innebär a den är icke-saionär [6]. I prakiken uförs ese genom följande regression: y p y = y = α + βy + β j y j + j= 1 (Augmened-Dickey-Fuller, ADF) Om den uppskaade variabeln β ine är signifikan mindre än e, förkasas ine nollhypoesen för icke-saionär och idsserien måse differenieras innan den kan användas [7]. Orsaken ill a man måse förså skillnaden mellan en saionär och ickesaionär idsserie är a de vå idsserier måse vara icke-saionära och av samma grad för a de ska kunna vara koinegrerade. Tanken om koinegraion kan förklaras uifrån formeln nedan: s z = x βy Idén bakom formeln är a efer a man har beräkna differensen mellan variablerna x och y så ska z bli saionär. Dea gäller dock bara om x och y är inegrerade av samma grad, efersom z blir inegrerad av graden I(d-b). Därför måse d och b vara lika för a z ska bli saionär, I(0). Vekorn β kallas för koinegraionsvekorn och markerar a om differenieringen ska fungera måse skalan göras om för en av variablerna [1]. Den mes använda och populära meoden för a esa efer koinegraion inroducerades som idigare beskrivis av Engle-Granger (1983) och baseras på koinegrerad regression. y är icke- Engle-Graners koinegraionses uförs i vå seg: 1. Börja med a skaa x = α + β1 y + s, där x och saionära idsserier av samma grad. 4

12 2. Uför därefer ADF-ese på residualen { s }. Om resulaserien saknar enhesro är den saionär. Serierna { x, y } är därmed koinegrerade och dess koinegraionsvekor är (1 -α 1). A en mängd variabler är koinegrerade beyder även a de är mean-revering, dvs. a modellens spread srävar illbaka ill si långsikiga medelvärde. Däremo gäller ine de omvända, dvs. mean-revering beyder ine nödvändigvis a variablerna är koinegrerade. De är sandard a uföra koinegraion analyser på logarimen av prise. Spreaden beräknas då enlig s = ln( x ) β1 ln( y ). Genom a använda logarimen för spreaden kompenserar man för effeken av generella ökningar/minskningar av akiekurserna, dvs. börsens generella uppgång/nedgång. Man kan borse från α uan a förlora allmängilighe [8]. 2.2 Pairs Trading Pairs rading [12] är en marknadsneural akiesraegi som baseras på koinegraion eller liknande relevana ekniker. Sraegin går u på a hia vå akier vars kurser hisorisk se är koinegrerade. Då vå idsserier är koinegrerade gäller enlig ovan a akierna har e långsikig samband och spreaden, s = ln( x ) β1 ln( y ) är saionär och därmed även mean-revering [9]. Figur Två sycken koinegrerade akier Figur Akiepares mean-revering spread. Figur Spreadens köp och sälj nivåer Då man handlar med pairs rading unyja man egenskapen a spreaden är mean-revering (se figur 2.2), dvs man ugår ifrån a även om spreaden divergerar från si medelvärde kommer den inom kor a komma illbaka ill medelvärde igen. När spreaden divergerar från medelvärde med e sedan föru besäm röskelvärde ingår man kora/långa-posiioner på den underliggande porföljen, π = β y (se figur 2.3). När sedan spreaden åervänder ill medelvärde går x 1 5

13 man ur posiionen. Man ingår allså en långposiion på porföljen, π = x β1 y, då spreadens värde hamnar under de lägsa röskelvärde, dvs. man köper 1 sycken x -akier och blankar β 1 sycken y -akier. För a ingå en korposiion gäller isälle a spreadens värde ska ligga över de översa röskelvärde, dvs. man säljer/blankar 1 sycken x -akier och köper β 1 sycken y -akier. Genom a på samma gång köpa den ena akien och sälja den andra kan man jäna pengar på båda posiionerna, samidig som man reducerar risken för sora marknadsrörelser. Om båda akierna skulle falla kommer man ros falle a jäna pengar på den ena akien. Pairs rading sraegin leder således ill a inveseraren kan göra vins oberoende av om marknaden går upp eller ner, en marknadsneural akiesraegi. Den sörsa risken med pairs rading är a båda posiionerna går å fel håll, de vill säga den akie du vill ska gå upp går isälle ner och vice versa. Dea innebär a du förlorar pengar på båda posiionerna. Risken kan begränsas genom a du använder sop loss order och auomaisk sänger en eller båda posiionerna om de går å fel håll. 2.3 Sandard AdaBoosen Boosing är en generell meod för a förbära noggrannheen hos inlärningsalgorimer. Meoden bygger på idigare eorier som PAC, Probably Approximaely Correc, som skapades av L G Valian 1984 [14]. PAC beskriver en domänoberoende inlärningsmeod och dess saisiska egenskaper. Valian var den förse a sälla frågan om en svag inlärningsalgorim som i PAC ger e resula som är endas lie bäre än en slumpmässig gissning kan boosas ill en sark inlärningsalgorim med mer exak resula. Valian kom fram ill a man med hjälp av a boosa en svag inlärningsalgorim kunde minska fele i hypoesen ill godyckliga nivåer. Scapire uvecklade den försa bevisbar fungerande boosing algorimen. De var också han och Freud som 1995 inroducerade den försa AdaBoosing algorimen [15]. Den grundläggande idén bakom AdaBoosing och andra inlärningsalgorimer är a de kombinerar relaiv enkla bashypoeser/modeller, så kallade svaga klassificerare ill en slugilig förusägelse, sark klassificerare. Boosing bidrar ill a nya modeller bli bra på områden där redan använda modeller ine är så effekiva. Basmodellerna vikas efer si resula och en vikad linjärkombinaion av dessa bildar sedan den sarka klassificeraren, själva förusägelsen. AdaBoos algorimen är snabb, enkel och lä a programmera och ill skillnad från andra boosing algorimer behöver den ingen idigare kännedom om presanda hos den svaga hypoesen och kan därför flexibel kombineras med andra meoder för a hia svaga hypoeser. Umärkande för AdaBoos algorimen är a precisionen hos den slugiliga klassificeraren ökar då precisionen hos någon av de underliggande klassificerarna ökar. I klassificeringssammanhang definieras precision som anale räklassificeringar/(anale räklassificeringar+anale felklassificeringar) Hos andra boosing algorimer beror precisionen för den slugiliga klassificeraren bara av den underliggande klassificerare vars uförande 6

14 är säms. Ada sår för adapiv dvs. anpassningsbar. Med anpassningsbar menas jus a AdaBoosen anpassar sig efer felgraden hos de individuella svaga klassificerarna. AdaBoos algorimen besår av följande seg [14]: Give: (( x 1, y1),...,( x n, yn )) där varje xi X, yi Y = { 1, + 1} Iniialisera D 1 ( i) = 1/ m, i = 1,..., m (sannolikhesfördelning) För = 1,, T 1. Träna de svaga klassificerarna med hjälp av fördelningen D 2. Hia den svaga klassificeraren h : X { 1, + 1} som minimerar fele ε, där ε = D ( ) [ h ( x ) y ] i i 3. Förusäningε <= 0, 5, annars error 1 1 ε 4. Välj α = ln( ) 2 ε i 5. Uppdaera: D+ 1( i) = D ( i) α e if α Z e if h ( x ) = h ( x ) i i y y i i = D ( i)exp( α y h ( x )) Z i i Z är en normaliseringsfakor (Vald så a D + 1 är en fördelning) Oupu: Den slugiliga hypoesen, den sarka klassificeraren T H ( x) = sign α h ( x) = 1 I de svaga kvalificerarna används vikade räningsse. Fördelningens viker på räningsexempel i under ieraion beecknas (i). Från början (då = 1) säs vikerna lika, D 1 ( i) = 1/ m, men efer varje ieraion kommer vikerna a ändras så a viker som hör ill punker som felklassificeras ges en högre vik under näsa ieraion. För de rä klassificerade punkerna gäller mosasen, dvs. minskad vik vid näsa ieraion. Dea leder ill a de svaga klassificerarna vid näsa ieraion kommer a fokusera på de punker som felklassificerades i idigare ieraioner. Vid varje ieraion = 1,, T plockar AdaBoosen u en mängd slumpmässig från räningsmängden och applicerar de svaga klassificerarna på denna mängd. Algorimen väljer den klassificerare h : X { 1, + 1} som minimerar fele, ε. Då denna hias beräknas α -värde och vikerna uppdaeras inför näsa ierering. D D 7

15 Efer T ieraioner kombinerar AdaBoosen de svaga klassificerarna ill en sark klassificerare. Hur sor del av den slugiliga klassificeraren som varje svag klassificerare ugör besäms av α -värde vilke beräknas i seg 3. De finns många olika illämpningar och uvecklingar av AdaBoosen. I mi examensarbee har jag använ en generaliserad AdaBoos som är mer anpassad ill e finansiell arbesområde [9]. Den generaliserade AdaBoosen beskrivs under kapiel Simulaed Annealing Simulaed Annealing [11] är en eknik som används vid opimering av funkioner över sora mängder, särskil då en global exrempunk är gömd bakom flera, svaga, lokala exrempunker. Den ursprungliga idén bakom simulaed annealing är ermodynamik, framför all hur flyande väskor fryser och krisalliseras. Då en väskas emperaur är illräcklig hög kan molekylerna röra sig hel fri, de kan gå från höga energinivåer ill låga och värom. Om emperauren sänks förlorar de sin rörlighe och vid illräcklig låg emperaur bildar de krisaller. Krisaller har sysemes lägsa energinivå, dvs. e global minimum. De är precis den här processen vi vill eferlikna med Simulaed Annealing för a hia en global minimipunk. Simulaed annealings sörsa fördel genemo andra meoder är dess förmåga a undvika a bli fas i e lokal minimum. För a lyckas med dea krävs a man kyler e sysem illräcklig långsam y annars kommer de a bildas e measabil illsånd i srukuren som gör a vi fasnar i lokala minimipunker och aldrig hiar fram ill den önskvärda globala minimipunken. För a simulera jämviksläge genererar man många olika illsånd, genom a från e give illsånd slumpa fram små förändringar kring dea. Om de nya framslumpade illsånde har lägre energi kommer de nya illsånde a acceperas och vi forsäer vår sökning från den nya punken. Om däremo en punk har högre E energi ges sannolikheen a den ska acceperas med exp( ). Där E sår för T energinivåer, E = E( n + 1) E( n) och T är en konrollparameer som represenerar villigheen a accepera e sämre val (Formeln har si ursprung i E Bolzmanns sannolikhes fördelning, exp( ), som är naurens egen kt minimeringsformel enlig ermodynamiken). T minskas med iden. E illsånd med högre energi kan allså acceperas med en viss sannolikhe. Följs dea konsekven kommer vi illslu a hamna i e jämviksläge. För a Simulaed annealing ska lyckas hia dea jämviksläge krävs a saremperauren T är illräcklig hög för a pariklarna ska kunna hoppa omkring på e slumpmässig sä. 8

16 3 Meod I dea kapiel preseneras den meod som har använs i uppsasen. Förs diskueras hur daainsamlingen har gå illväga. Därefer beskrivs de hur handelssraegin är uförd. Tillslu preseneras hur resulae har beräknas. 3.1 Daa Dea examensarbee behandlar vå olika daamängder. Daamängd 1 som besår av vå sycken axieindex, S&P mid-cap (MID) och S&P 500 index (SPX) från ill sam daamängd 2 som besår av 10 sycken akieindex, MSCI Öserrike, MSCI Belgien, MSCI Finland, MSCI Frankrike, MSCI Tyskland, MSCI Grekland, MSCI Ialien, MSCI Nederländerna, MSCI Porugal och MSCI Spanien från ill Den daa som behövs för den empiriska delen av examensarbee, är insamlad från Bloomberg. 3.2 Beräkning Alla beräkningar i examensarbee är uförda i MATLAB. Följande idsperioder används för a beräkna ufalle av handelsmodellen. Daamängd 1 1. Träning 2. Tes 3. Ou-Of-Sample 06 Dec Nov Dec Jun Jul Jun 2008 Daamängd 2 1.Träning 2.Ou-Of-Sample 30 Apr Nov Nov Aug 2008 Tabell I rapporen undersöka daamängder Till a börja med kommer beräkningar med handelsmodellen a ske på daamängd 1. Här ränas och esas modellen för a hia den bäsa lösningen på hisoriska daa. Dea görs genom a söka efer de insällningar av modellen som ger bäs resula på daamängd 1:s es- och räningsperiod. Då dea resula har erhållis används den framkomna modellen för forsa uvärdering och eser på ou-of-sample daa. Ou-of-sample är den daa som ine finns illgänglig vid de illfälle då sraegin skapas och används som referens på hur väl sraegin preserar. För a undersöka modellens ou-of-sample resula esas modellen på daamängd 1:s ou-of-sample period. All ou-of-sample daa blev illgänglig förs i slue av examensarbee och har därför ine kunna påverka idigare uvecklingar av modellen. Inga juseringar av modellen är illåna under ou-of-sample beräkningarna. 9

17 Modellen esas också på en annan daamängd, daamängd 2. Även dea daa blev illgänglig förs i slue på examensarbee och har ine påverka insällningarna av modellen. Förs ränas modellen på daamängd 2:s räningsperiod, vars längd väljs så a den är ungefär lika lång som daamängd 1:s räningsperiod. Sen esas modellen på daamängd 2:s ou-of-sample daa. 3.3 Handelssraegi På lång sik är idsserierna som används i examensarbee ine illräcklig sabila för a enbar kunna använda koinegraions-baserade ekniker som.ex. pairs rading och liknade verkyg för a a fram en sabil porföljsraegi. Här måse man unyja a spreaden har andra egenskaper uöver de enkla meanrevering egenskapen som används i koinegraions-baserade ekniker. För a a fram sabila porföljsraegier baserade på spreads från svag koinegrerade insrumen bör man även unyja karakerisiska drag som.ex. render av olika längder. Man vill därför använda en mer allmän spreadhandelssraegi som kan handla med flera olika yper av komplexa spreadidsserier. Ju mer komplex spreaddynamik som man använder deso läare är de a garanerar a flera olika regimer äcks i räningsfasen. De här kan signifikan öka sabilieen hos sraegins ou-of-sample jämför med en radiionell pairs rading sraegi Generaliserad AdaBoos s Med hjälp av koinegraion skapas i AdaBooen en syneisk illgång * = ln( S0, ) β1 ln( S1, ). Formel kan också skrivas som s = S0, * S n j= 1 β j j,. Då β j = 0 fås original målserien S 0. Denna syneiska illgången illhandahåller en opimal saisisk hedge för målillgången, S 0. (Enlig ovansående definiion på Pairs rading beskrivs hur man handlar med hedgen.) Då β 1 varieras kan man komma fram ill massor med olika spreadsdynamiker, s. Dessa kallas för svaga basmodeller och AdaBoosen har ill uppgif a kombinera ihop dessa ill en sark modell. Då vi sysslar med handlingssraegier och porföljopimering är en direk användning av sandard Adaboosen ine möjlig efersom vi ine vill lösa e klassificeringsproblem uan e opimeringsproblem. För a man ska kunna använda AdaBoos algorimen på vår opimeringsproblem krävs därför en generalisering av AdaBoos algorim [9] som kan hanera e vå-klassificerings problem, där klassificeraren reurnerar aningen 1 eller -1. Den posiiva ean beecknar a e inervall med längden τ har en avkasning, r, som är sörre än de förubesäm röskelvärde r c (dvs. r rc ). Den negaiva ean sår för r rc. Genom a beräkna avkasningen på inervall av längden τ skifade med längden τ och beeckna varje inervall med -1 eller 1 enlig ovan fås en symbolisk avkodad idsserie av sraegisk avkasning. Här vill vi allså ine 10

18 klassificera korrek mellan -1 och 1 uan maximera anale 1:or. De är vår opimeringsproblem. Följande seg ingår i den generaliserade AdaBoosen: (1) w n = 1/ N (1.1) N ( ) ε = ( w I( y h ( x ))) (1.2) n= 1 N n= 1 n n n ( ) γ = ( w y h )( x ) (1.3) n n n 1 1+ γ 1 1+ ρ α = ln( ) ln( ) (1.4) 2 1 γ 2 1 ρ ( + 1) n ( ) n w = w exp( α y h ( x )) / Z T T = 1 = 1 n n (1.5) f ( x) = α h ( x) / α (1.6) Paramerar Förklaring h x ) Den bäsa bashypoesen vid :e ieraionen ( n N f(x) ρ x n n Anale punker i räningsdaa Är den slugiliga vikade linjärkombinaionen av hypoeserna Reglerings parameer Mängden av en klassificerares n:es daapunk y Klasseike (dvs. -1 eller +1). T Anale boosing ieraioner w Viken av den n:e daapunken vid :e ieraionen Z () n Vikad normaliserings konsan vid :e ieraionen AdaBoosen sarar med lika och normaliserade viker för alla räningsdaa (seg 1). Seg 2-5 genomförs vid varje ieraion, ill sopp krierie γ < ρ (dvs. 1 ε >= (1 ρ) ) eller γ = 1 (dvs. ε = 0). Här anropar AdaBoosen en pool med 2 svaga bassraegier och sraegin med fles 1:or väljs, dvs den sraegi som har mins fel enlig punk 1.2. I seg 3-5 uppdaeras vikerna som ska användas i näsa ieraion. I seg 5 sraffas de daapunker som felklassificeras av den då valde svaga modellen, dvs. deras viker kommer a minskas ill näsa ieraion. Vikerna ill de punker som räklassificeras kommer däremo a ökas ill näsa ieraion. Seg 6 säer ihop den slugiliga vikade linjärkombinaionen av bashypoeserna. 11

19 3.4 Handelssignaler EMA Mean Reverse För a besämma om man ska gå in i en lång eller kor posiion beräknar man spreadens EMA(n.a), exponeniell glidande medelvärde. EMA(n,a) är en meod som använder n hisoriska daa och vikar dessa exponeniell med en avklingning a, dvs. de senase dagsdaa får sor vik medan ju längre bor man kommer från den valda dagen deso mindre vik får dessa dagar. EMA Mean Reverse går u på a man för varje dag beräknar vå olika EMA, EMA1 och EMA2. EMA1 beräknas på e sörre n-värde, dvs. den beräknas på fler hisoriska daa än vad EMA2 gör. På så sä får man vå olika EMA-kurvor. Efersom EMA1 beräknas på en längre daamängd kommer denna kurva a vara lugnare och svänga mindre än EMA2. Figur För a handla på dessa EMA-kurvor esas vilken EMA som för dagen är sörs. Om EMA2>EMA1 anses renden vara uppågående, och vi kommer a a en lång posiion. Om däremo EMA2<EMA1 anses renden vara nerågående och vi kommer a a en kor posiion. Handelssraegin besäms av följande variabler, ( n, a, m, α, β ), vilka syr handelssignalerna. I examensarbee slumpas variablernas sarvärden fram vid varje ieraion i AdaBoosen. Värdena som paramerarna kan hamna emellan är som följer: 12

20 Paramerar Lägsa Högsa Förklaring värde värde N Anale hisoriska daa för EMA1 A Sorleken på avklingningen M Anale hisoriska daa för EMA2 Α 0 2 Tröskelmå för volailieen β 1 1 Parameer i spreaden Handeln med kora eller långa posiioner sker på näskommande dag. 3.5 Sokasisk sökalgorim I examensarbee gjordes e försök med a använda Simulaed Annealing för a a fram den opimala handelssraegin. Tanken var a denna meod enkel skulle kunna hia den handelsmodell som gav högs avkasning vid gällande viker. Dea visade sig dock vara mycke svårare än man rodde pga. a de är svår a sälla in rä värde på emperauren T och avklingningsvärde. Om dessa är felinsällda finns de en risk a Simulaed Annealing ine hiar rä globala minimipunk. Resulae blev a meoden ros a inga paramerar ändras ändå hiade olika globala minimipunker vid varje körning. Pga. dea valdes en annan meod, sokasisk sökalgorim, för a kunna a fram den globala minipunken. Till skillnad från Simulaed Annealing acceperar ine denna meod e illsånd som är sämre än de valda illsånde. De är också skillnad i hur man väljer de försa illsånde som ska esas. I den nya meoden slumpar man fram e anal punker i parameerrumme, i dea fall 5000 sycken och väljer sedan u de 10 bäsa punkerna, dvs. de punkerna i parameerrumme med högs avkasning av de 5000 sycken punkerna. Därefer görs en deerminisisk sökning i 200 seg run varje punk. Om en ny punk har e illsånd som är bäre än den gällande punkens illsånd acceperas den nya punken och sökningen forsäer från denna punk. Till slu har man få 10 sycken nya illsånd och av dessa väljs den punk med högs avkasning ill den globala minimipunken. 13

21 4. Resula I början av dea kapiel beskrivs hur avkasningsberäkningarna uförs. Därefer preseneras resulae av handelssraegin. Förs illusreras in-sample resulae, senare i kapiel re preseneras ou-of sample resulae, i fjärde kapile illusreras ackumulerad avkasning och sis beskrivs och visas saisiska eser. 4.1 Avkasningsberäkning Uvärdering och jämförelser av porföljer baseras ofas på avkasningen för respekive porfölj under en viss idsperiod. En svaghe med dea sä a bedöma porföljer är a man ine ar hänsyn ill vilken risk porföljen har, hur marknaden där porföljen placera si kapial har presera eller hur dukiga förvalarna för porföljen är. E sä a göra uvärderingarna mer rävisa är a man föruom avkasningen också ar hänsyn ill porföljens risk och säer avkasningen i relaion ill risken. I denna uppsas har de riskjuserande avkasningsmåe informaionskvoen (IR) använs för a jämföra resula. IR beskriver relaionen mellan den akiva avkasningen och den akiva avkasningens sandardavvikelse och beräknas på följande sä: IR årlig = µ 250 σ där µ och σ är medelvärde och sandardavvikelsen av den dagliga avkasningen. Genom a muliplicera med 250 fås den årliga informaionskvoen 1. Om en posiiv kvo påvisas har en riskjuserad överavkasning erhållis genemo index under samma period. 4.2 In-sample resula från daamängd 1 Här visas resulae för handelsmodellens in-sample period. Under in-sample perioden juseras variabler och insällningar i handelsmodellen för a uppnå e illfredsällande resula Resula från räningsperioden Under räningsperioden appliceras Adaboosing på räningsdaa. Anale ieraioner (T) som uförs i AdaBoosen saes ill T=20, efersom resula vid färre ieraioner ine blir illförlilig och beräkningar med fler ieraioner endas ger marginella förbäringar och ökar beräkningsiden. Vid varje ieraion väljer en 1 De årliga medelvärde skalas linjär, 250µ medan sandardavvikelsen skalas 250 σ 14

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Är valutamarknader effektiva? En kointegrationsanalys av spot- och forwardkurser

Är valutamarknader effektiva? En kointegrationsanalys av spot- och forwardkurser NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee C Förfaare: Per Haldén och Jonas Rydén Handledare: Annika Alexius och Chrisian Nilsson H 06 Är valuamarknader effekiva? En koinegraionsanalys

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet 1 File = SweTrans_RuMarch09Lohmander_090316 ETT ORD KORRIGERAT 090316_2035 (7 sidor inklusive figur) Sraegiska möjligheer för skogssekorn i Ryssland med fokus på ekonomisk opimering, energi och uhållighe

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Växelkursprognoser för 2000-talet

Växelkursprognoser för 2000-talet Naionalekonomiska insiuionen Kandidauppsas Januari 28 Växelkursprognoser för 2-ale Handledare Thomas Elger Fredrik NG Andersson Förfaare Kenh Hedberg Sammanfaning Tiel: Växelkursprognoser för 2-ale Ämne/kurs:

Läs mer

Konsumtion, försiktighetssparande och arbetslöshetsrisker

Konsumtion, försiktighetssparande och arbetslöshetsrisker Fördjupning i Konjunkurläge juni 12 (Konjunkurinsiue) Konjunkurläge juni 12 75 FÖRDJUPNING Konsumion, försikighessparande och arbeslöshesrisker De förvänade inkomsborfalle på grund av risk för arbeslöshe

Läs mer

Betalningsbalansen. Andra kvartalet 2012

Betalningsbalansen. Andra kvartalet 2012 Bealningsbalansen Andra kvarale 2012 Bealningsbalansen Andra kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Second quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

Monetära modellers prognosförmåga för den svenska kronans utveckling

Monetära modellers prognosförmåga för den svenska kronans utveckling NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee D Förfaare: Per Jonsson Handledare: Annika Alexius HT 2005 Moneära modellers prognosförmåga för den svenska kronans uveckling Sammanfaning

Läs mer

Är terminspriserna på Nord Pool snedvridna?

Är terminspriserna på Nord Pool snedvridna? NATIONALEKONOMISKA INSTITUTIONEN Uppsala universie Examensarbee D Förfaare: Handledare: Pär Holmberg och Erik Glans Termin och år: Höserminen 2007 Är erminspriserna på Nord Pool snedvridna? En sudie av

Läs mer

Hedgefonder och aktiefonder - En studie av riskexponering och market-timing på den svenska marknaden

Hedgefonder och aktiefonder - En studie av riskexponering och market-timing på den svenska marknaden Magiseruppsas i finansiering Föreagsekonomiska insiuionen FEK 591 Lunds Universie Hedgefonder och akiefonder - En sudie av riskexponering och marke-iming på den svenska marknaden Handledare Hossein Asgharian

Läs mer

Betalningsbalansen. Tredje kvartalet 2010

Betalningsbalansen. Tredje kvartalet 2010 Bealningsbalansen Tredje kvarale 2010 Bealningsbalansen Tredje kvarale 2010 Saisiska cenralbyrån 2010 Balance of Paymens. Third quarer 2010 Saisics Sweden 2010 Producen Producer Saisiska cenralbyrån,

Läs mer

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning Hans Andersson (FP), ordförande i Tiohundra nämnden varanna år och Karin Thalén, förvalningschef TioHundra bakom solarna som symboliserar a ingen ska falla mellan solar inom TioHundra. Ingen åervändo TioHundra

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

Jämställdhet och ekonomisk tillväxt En studie av kvinnlig sysselsättning och tillväxt i EU-15

Jämställdhet och ekonomisk tillväxt En studie av kvinnlig sysselsättning och tillväxt i EU-15 Examensarbee kandidanivå NEKK01 15 hp Sepember 2008 Naionalekonomiska insiuionen Jämsälldhe och ekonomisk illväx En sudie av kvinnlig sysselsäning och illväx i EU-15 Förfaare: Sofia Bill Handledare: Ponus

Läs mer

Betalningsbalansen. Fjärde kvartalet 2012

Betalningsbalansen. Fjärde kvartalet 2012 Bealningsbalansen Fjärde kvarale 212 Bealningsbalansen Fjärde kvarale 212 Saisiska cenralbyrån 213 Balance of Paymens. Fourh quarer 212 Saisics Sweden 213 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

Betalningsbalansen. Tredje kvartalet 2012

Betalningsbalansen. Tredje kvartalet 2012 Bealningsbalansen Tredje kvarale 2012 Bealningsbalansen Tredje kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Third quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån,

Läs mer

Att studera eller inte studera. Vad påverkar efterfrågan av högskole- och universitetsutbildningar i Sverige?

Att studera eller inte studera. Vad påverkar efterfrågan av högskole- och universitetsutbildningar i Sverige? NATIONALEKONOMISKA INSTITUTIONEN Uppsala universie Examensarbee C Förfaare: Ameli Frenne Handledare: Björn Öcker Termin och år: VT 2009 A sudera eller ine sudera. Vad påverkar eferfrågan av högskole- och

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

Förord: Sammanfattning:

Förord: Sammanfattning: Förord: Denna uppsas har illkommi sedan uppsasförfaarna blivi konakade av Elecrolux med en förfrågan om a undersöka saisikmodulen i deras nyimplemenerade affärssysem. Vi vill därför acka vår handledare

Läs mer

Det svenska konsumtionsbeteendet

Det svenska konsumtionsbeteendet NATIONALEKONOMISKA INSTITUTIONEN Kandidauppsas i makroekonomi, 2008 De svenska konsumionsbeeende En ekonomerisk analys av den permanena inkomshypoesen Handledare : Fredrik NG Andersson Förfaare: Ida Hedlund

Läs mer

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys Skuldkrisen Föreläsning KAU Bo Sjö Världsbanken och IMF Grund i planeringen efer 2:a världskrige Världsbanken Ger (hårda) lån ill sora infrasrukurprojek i uvecklingsländer. Hisorisk se, lyckas bra, lånen

Läs mer

FAQ. frequently asked questions

FAQ. frequently asked questions FAQ frequenly asked quesions På de följande sidorna har jag samla ihop några av de frågor jag under årens lopp få av sudener när diverse olika problem uppså i arbee med SPSS. De saisiska problemen har

Läs mer

Oljepris och Makroekonomien VAR analys av oljeprisets inverkan på aktiemarknaden

Oljepris och Makroekonomien VAR analys av oljeprisets inverkan på aktiemarknaden NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee D Förfaare: Rober Fredriksson Handledare: Beng Assarsson HT 2007 Oljepris och Makroekonomien VAR analys av oljeprises inverkan på akiemarknaden

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,

Läs mer

Vad är den naturliga räntan?

Vad är den naturliga räntan? penning- och valuapoliik 20:2 Vad är den naurliga ränan? Henrik Lundvall och Andreas Wesermark Förfaarna är verksamma vid avdelningen för penningpoliik, Sveriges riksbank. Vilken realräna bör en cenralbank

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Tjänsteprisindex för varulagring och magasinering

Tjänsteprisindex för varulagring och magasinering Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005

Läs mer

Pensionsåldern och individens konsumtion och sparande

Pensionsåldern och individens konsumtion och sparande Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson

Läs mer

Jobbflöden i svensk industri 1972-1996

Jobbflöden i svensk industri 1972-1996 Jobbflöden i svensk induri 1972-1996 av Fredrik Andersson 1999-10-12 Bilaga ill Projeke arbeslöshesförsäkring vid Näringsdeparemene Sammanfaning Denna udie dokumenerar heerogenieen i induriella arbesällens

Läs mer

Hur varaktig är en förändring i arbetslösheten?

Hur varaktig är en förändring i arbetslösheten? Rappor ill Finanspoliiska råde 2010/1 Hur varakig är en förändring i arbeslösheen? U. Michael Bergman Københavns Universie, EPRU, FRU och Finanspoliiska råde De åsiker som urycks i denna rappor är förfaarens

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

D-UPPSATS. Prisutvecklingen av järnmalm 1970-2000

D-UPPSATS. Prisutvecklingen av järnmalm 1970-2000 D-UPPSATS 2006:126 Prisuvecklingen av järnmalm 1970-2000 En jämförelse av Hoellingmodellen och den fakiska uvecklingen Timo Ryhänen Luleå ekniska universie D-uppsas Naionalekonomi Insiuionen för Indusriell

Läs mer

Tjänsteprisindex för Rengöring och sotning

Tjänsteprisindex för Rengöring och sotning Tjänseprisindex för Rengöring och soning Branschbeskrivning för SNI-grupp 74.7 TPI-rappor nr 18 Thomas Olsson Tjänseprisindex, Priser (MP/PR), SCB 2007 Förord Som e led i a förbära den ekonomiska saisiken

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar Kan arbesmarknadens parer minska jämviksarbeslösheen? Teori och modellsimuleringar Göran Hjelm * Working aper No.99, Dec 2006 Ugiven av Konjunkurinsiue Sockholm 2006 * Analysen i denna rappor bygger på

Läs mer

Har Sveriges Riksbank blivit mer flexibel i sin penningpolitik?

Har Sveriges Riksbank blivit mer flexibel i sin penningpolitik? Har Sveriges Riksbank blivi mer flexibel i sin penningpoliik? En analys av rekursiv skaade Taylorregler baserade på realidsdaa Henrik Siverbo Kandidauppsas Lunds Universie, Naionalekonomiska insiuionen

Läs mer

Timmar, kapital och teknologi vad betyder mest? Bilaga till Långtidsutredningen SOU 2008:14

Timmar, kapital och teknologi vad betyder mest? Bilaga till Långtidsutredningen SOU 2008:14 Timmar, kapial och eknologi vad beyder mes? Bilaga ill Långidsuredningen SOU 2008:14 Förord Långidsuredningen 2008 uarbeas inom Finansdeparemene under ledning av Srukurenheen. I samband med uredningen

Läs mer

Personlig assistans en billig och effektiv form av valfrihet, egenmakt och integritet

Personlig assistans en billig och effektiv form av valfrihet, egenmakt och integritet Personlig assisans en billig och effekiv form av valfrihe, egenmak och inegrie En jämförelse mellan kosnaderna för personlig assisans och kommunal hemjäns 1 Denna rappor är en försa del av e projek vars

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Konjunkturinstitutets finanspolitiska tankeram

Konjunkturinstitutets finanspolitiska tankeram Konjunkurinsiues finanspoliiska ankeram SPECIALSTUDIE NR 16, MARS 2008 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET (KI) gör analyser och prognoser över den svenska och ekonomin sam bedriver forskning

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid

Läs mer

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor

Läs mer

Ansökan till den svenskspråkiga ämneslärarutbildningen för studerande vid Helsingfors universitet. Våren 2015

Ansökan till den svenskspråkiga ämneslärarutbildningen för studerande vid Helsingfors universitet. Våren 2015 Ansökan ill den svenskspråkiga ämneslärarubildningen för suderande vid Helsingfors universie Våren 2015 Enheen för svenskspråkig ämneslärarubildning info-amneslarare@helsinki.fi fn 02-941 20606, 050-448

Läs mer

Tjänsteprisindex (TPI) 2010 PR0801

Tjänsteprisindex (TPI) 2010 PR0801 Ekonomisk saisik/ Enheen för prissaisik 2010-06-22 1(12) Tjänseprisindex (TP) 2010 PR0801 denna beskrivning redovisas förs allmänna uppgifer om undersökningen sam dess syfe, regelverk och hisorik. Därefer

Läs mer

Optimal prissäkringsstrategi i ett råvaruintensivt företag Kan det ge förbättrad lönsamhet?

Optimal prissäkringsstrategi i ett råvaruintensivt företag Kan det ge förbättrad lönsamhet? Föreagsekonomiska Magiseruppsas Insiuionen Höserminen 2004 Opimal prissäkringssraegi i e råvaruinensiv föreag Kan de ge förbärad lönsamhe? Förfaare: Marin Olsvenne Tobias Björklund Handledare: Hossein

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI SAISISKA CENRALBYRÅN Pm ill Nämnden för KPI 1(21) Dags för sambye i KPI? - Nuvarande meod för egnahem i KPI För beslu Absrac I denna pm preseneras hur nuvarande meod för egnahem i KPI beräknas, moiveras

Läs mer

Betalningsbalansen. Tredje kvartalet 2008

Betalningsbalansen. Tredje kvartalet 2008 Bealningsbalansen Tredje kvarale 2008 Bealningsbalansen Tredje kvarale 2008 Saisiska cenralbyrån 2008 Balance of Paymens. Third quarer 2008 Saisics Sweden 2008 Producen Producer Saisiska cenralbyrån,

Läs mer

En flashestimator för den privata konsumtionen i Sverige med hjälpvariablerna HIP och detaljhandeln

En flashestimator för den privata konsumtionen i Sverige med hjälpvariablerna HIP och detaljhandeln Bakgrundsfaka En flashesimaor för den privaa konsumionen i Sverige med hjälpvariablerna HIP och dealjhandeln En idsserieanalys med hjälp av saisikprogramme TRAMO 006: Ekonomisk saisik I serien Bakgrundsfaka

Läs mer

Upphandlingar inom Sundsvalls kommun

Upphandlingar inom Sundsvalls kommun Upphandlingar inom Sundsvalls kommun 1 Innehåll Upphandlingar inom Sundsvalls kommun 3 Kommunala upphandlingar - vad är de? 4 Kommunkoncernens upphandlingspolicy 5 Vad är e ramaval? 6 Vad gäller när du

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Infrastruktur och tillväxt

Infrastruktur och tillväxt Infrasrukur och illväx En meaanalyisk sudie av infrasrukurinveseringars påverkan på ekonomisk illväx Infrasrucure and growh A mea-analyical sudy of he effecs of invesmens in infrasrucure on economic growh

Läs mer

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002 Egnahemsposen i konsumenprisindex En granskning av KPI-uredningens förslag Specialsudie Nr 2, maj 22 Ugiven av Konjunkurinsiue Sockholm 22 Konjunkurinsiue (KI) gör analyser och prognoser över den svenska

Läs mer

Håkan Pramsten, Länsförsäkringar 2003-09-14

Håkan Pramsten, Länsförsäkringar 2003-09-14 1 Drifsredovisning inom skadeförsäkring - föreläsningsaneckningar ill kursavsnie Drifsredovisning i kursen Försäkringsredovi s- ning, hösen 2004 (Preliminär version) Håkan Pramsen, Länsförsäkringar 2003-09-14

Läs mer

Direktinvesteringar och risk

Direktinvesteringar och risk NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee D Förfaare: Per Haldén Handledare: Marin Holmén H 07 Direkinveseringar och risk Finns e samband? Sammanfaning Beslu om och var man ska genomföra

Läs mer

Kreditderivat: introduktion och översikt

Kreditderivat: introduktion och översikt Kredideriva: inrodukion och översik Alexander Herbersson, Cenrum för Finans/Ins. för Naionalekonomi Alexander.Herbersson@economics.gu.se FKC seminarium, 2007-11-08 Kredideriva: inrodukion och översik p.

Läs mer

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn ByggeboNy Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn Geingplåga Arbesförmedlingen på plas i Alvarsberg Kenh i hyresgäsernas jäns Sark posiiv rend Den posiiva renden håller i sig. Under sommaren har

Läs mer

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo. 3D vaenanimering Joakim Julin Deparmen of Compuer Science Åbo Akademi Universiy, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.fi Absrak Denna arikel kommer a presenera e anal olika algorimer för a

Läs mer

Det svenska pensionssystemet. The Swedish Pension System

Det svenska pensionssystemet. The Swedish Pension System De svenska pensionssyseme Makroekonomiska aspeker ur e demografisk perspekiv The Swedish Pension Sysem Macro economic aspecs from a demographic view Förfaare: Sofia Eklund LIU-EKI/NEK-D--06/010--SE Magiseruppsas

Läs mer

Background Facts on Economic Statistics

Background Facts on Economic Statistics Background Facs on Economic Saisics 2003:12 En illämpning av TRAMO/SEATS: Den svenska urikeshandeln 1914 2003 An applicaion of TRAMO/SEATS: The Swedish Foreign Trade Series 1914 2003 Exporen år 1914-2003

Läs mer

Är staten löneledande? En ekonometrisk studie av löneutvecklingen för statligt anställda och privata tjänstemän 1970 2002

Är staten löneledande? En ekonometrisk studie av löneutvecklingen för statligt anställda och privata tjänstemän 1970 2002 Är saen löneledande? En ekonomerisk sudie av löneuvecklingen för salig ansällda och privaa jänsemän 1970 2002 Innehåll Förord 5 Inrodukion 6 Tidigare sudier 8 Den saliga lönebildningens uveckling 10 Daa

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svesning Examensarbee uför i Reglereknik av Andreas Pilkvis LiTH-ISY-EX-- Linköping Analys och modellering av ljusbåglängdsregleringen

Läs mer

Inflation och penningmängd

Inflation och penningmängd EKONOMSK DEBAT BO AXELL nflaion och penningmängd Vilka är inflaionens besämningsfakorer? Dea är själva ugångspunken for flerale ariklar i dea emanummer.. Somliga hävdar a inflaionen speciell i e lie land

Läs mer

Finansmarknaden; En översikt av instrument och värderingsmodeller

Finansmarknaden; En översikt av instrument och värderingsmodeller Finansmarknaden; En översik av insrumen och värderingsmodeller Jan R. M. Röman Deparmen of Mahemaics and Physics Mälardalen Universiy, weden Mälardalen Universiy INLEDNING... Akieopionens villkor... Akieerminens

Läs mer

Valutamarknadens effektivitet

Valutamarknadens effektivitet Ekonomihögskolan Lunds Univerise Naionalekonomiska Insiuionen Valuamarknadens effekivie En sudie av växelkurser uifrån UIP med förvänningar Förfaare: Krisoffer Persson Handledare: Fredrik NG Andersson

Läs mer

Penningpolitik och finansiell stabilitet några utmaningar framöver

Penningpolitik och finansiell stabilitet några utmaningar framöver NATIONAL- EKONOMISKA FÖRENINGENS FÖRHANDLINGAR 21-5-17 Sammanfaade av Birgi Filppa, Karin Siredo och Elisabeh Gusafsson Ordförande: Anders Björklund Inledare: Sefan Ingves, Riksbankschef Kommenaor: Pehr

Läs mer

fluktuationer Kurskompendium ht-02 2001-01-29 Preliminärt, kommentarer välkomna

fluktuationer Kurskompendium ht-02 2001-01-29 Preliminärt, kommentarer välkomna Förvänningar, finansiella marknader och makroekonomiska flukuaioner Kurskompendium h-02 200-0-29 Preliminär, kommenarer välkomna Av Beng Assarsson Naionalekonomiska insiuionen Uppsala universie Box 53

Läs mer

Regelstyrd penningpolitik i realtid

Regelstyrd penningpolitik i realtid Naionalekonomiska Insiuionen Regelsyrd penningpoliik i realid En konrafakisk simulering med realidsdaa Magiseruppsas 4 juni 2008 Handledare: Klas Freger Förfaare: Marin Henriksson Handledare: Jesper Hansson

Läs mer

Inflation och relativa prisförändringar i den svenska ekonomin

Inflation och relativa prisförändringar i den svenska ekonomin Inflaion och relaiva prisförändringar i den svenska ekonomin AV BENGT ASSARSSON Beng Assarsson är verksam på avdelningen för penningpoliik vid Sveriges riksbank och vid Naionalekonomiska insiuionen vid

Läs mer

REVISIONSMYNDIGHETEN. Kontroll av den förvaltande myndighetens efterlevnad av artikel 125.4 c rörande

REVISIONSMYNDIGHETEN. Kontroll av den förvaltande myndighetens efterlevnad av artikel 125.4 c rörande REVISIONSMYNDIGHETEN Konroll av den förvalande myndigheens eferlevnad av arikel 125.4 c rörande bedömning av risken för bedrägerier och effekiva och proporionella besämmelser om bedrägeribekämpning för

Läs mer

SCB:s modell för befolkningsprognoser

SCB:s modell för befolkningsprognoser BAKGRUNDSMATERIAL OM DEMOGRAFI, BARN OCH FAMILJ 2005:1 SCB:s modell för befolkningsprognoser En dokumenaion Saisiska cenralbyrån 2005 Background maerial abou demography, children and family 2005:1 SCB

Läs mer

Text: Mikael Simovits & Tomas Forsberg Illustration: Jonas Englund. Stort test: Watchguard Halon Cronlab Symantec Microsoft Cleanmail

Text: Mikael Simovits & Tomas Forsberg Illustration: Jonas Englund. Stort test: Watchguard Halon Cronlab Symantec Microsoft Cleanmail Tex: Mikael Simovis & Tomas Forsberg Illusraion: Jonas Englund Sor es: Wachguard Halon Cronlab Symanec Microsof Cleanmail Ren e-pos med 26 Skräppos är e sor problem för både i-avdelning och användare.

Läs mer

Riksbankens nya indikatorprocedurer

Riksbankens nya indikatorprocedurer Riksbankens nya inikaorproceurer MICHAEL K. ANDERSSON OCH MÅRTEN LÖF Förfaarna har okorera i ekonomeri och är verksamma vi Riksbankens prognosenhe. De senase åren har cenralbanker värlen över inressera

Läs mer

Förslag till minskande av kommunernas uppgifter och förpliktelser, effektivisering av verksamheten och justering av avgiftsgrunderna

Förslag till minskande av kommunernas uppgifter och förpliktelser, effektivisering av verksamheten och justering av avgiftsgrunderna Bilaga 2 Förslag ill minskande av kommuner uppgifer och förplikelser, effekivisering av verksamheen och jusering av avgifsgrunderna Ågärder som minskar kommuner uppgifer Inverkan 2017, milj. euro ugifer

Läs mer

Icke förväntad korrelation på den svenska aktiebörsen. Carl-Henrik Lindkvist Handledare: Johan Lyhagen

Icke förväntad korrelation på den svenska aktiebörsen. Carl-Henrik Lindkvist Handledare: Johan Lyhagen Icke förvänad korrelaion på den svenska akiebörsen Carl-Henrik Lindkvis Handledare: Johan Lyhagen Sammanfaning Denna uppsas avser a undersöka och, i den mån de går, förklara icke förvänad korrelaion mellan

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Växjö kommun En jämförande studie om svårigheter vid miljömålsformulering

Växjö kommun En jämförande studie om svårigheter vid miljömålsformulering Fakuleen för hälso- och livsveenskap Eamensarbee Väjö kommun En jämförande sudie om svårigheer vid miljömålsformulering Sara Berglund Huvudområde: Miljöveenskap Nivå: Grundnivå Nr: 2013:M9 Eamensarbees

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

Välkommen till. och. hedersvåld försvara ungdomarnas rättigheter. agera mot. Illustration: www.istockphoto.com. juno blom

Välkommen till. och. hedersvåld försvara ungdomarnas rättigheter. agera mot. Illustration: www.istockphoto.com. juno blom Välkommen ill och Illusraion: www.isockphoo.com # 6 OKTOBER 2009 årg 3 SkandinaviSk SjukvårdSinformaion agera mo juno blom hedersvåld försvara ungdomarnas räigheer Själavårdarna inom Kriminalvården samalar

Läs mer

Massivträ som väggmaterial - en jämförande studie av energiförbrukning och termisk komfort

Massivträ som väggmaterial - en jämförande studie av energiförbrukning och termisk komfort Massivrä som väggmaerial - en jämförande sudie av energiförbrukning och ermisk komfor Examensarbee inom civilingenjörsprogramme Väg- och vaenbyggnad L E N A G O L L V I K Insiuionen för bygg- och miljöeknik

Läs mer

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning VA-TAXA 2000 Taxa för Moravaen AB:s allmänna vaen- och avloppsanläggning Taxa för Moravaen AB:s Allmänna vaen- och avloppsanläggning 4 4.1 Avgif as u för nedan angivna ändamål: Anagen av Moravaen AB:s

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

Truckar och trafik farligt för förare

Truckar och trafik farligt för förare De händer en del i rafiken. För några år sedan körde en av Peer Swärdhs arbeskamraer av vägen. Pressade ider, ruckar och unga fordon. På åkerie finns många risker. Arbesgivaren är ansvarig för arbesmiljön,

Läs mer

Reala växelkursers bestämningsfaktorer

Reala växelkursers bestämningsfaktorer ATIOALEKOOMISKA ISTITUTIOE Uppsala Universie Magiseruppsas, 0 poäng Förfaare: Jonas Rydén Handledare: Annika Alexius VT 2007 Reala växelkursers besämningsfakorer En analys av oljepris och BP-uvecklings

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Kapitel 1: t Sid 3 INNEHÅLL:

Kapitel 1: t Sid 3 INNEHÅLL: Kapiel 1: VÄLKOMMEN! Fanasi är vikigare än kunskap ALBERT EINSTEIN INNEHÅLL: SID 3 - VÄLKOMMEN SID 4 - POLÄR MENTAL TRÄNING En hel ny mix av kraffulla verkyg vänar på dig SID 6 - ÖVERSIKT KNACKPUNKTERNA

Läs mer

Tunga lyft och lite skäll för den som fixar felen

Tunga lyft och lite skäll för den som fixar felen Tunga lyf och lie skäll för den som fixar felen De fixar soppe i avloppe, de rasiga gångjärne, den läckande vämaskinen. De blir uskällda, igenkända, välkomnade. A jobba hemma hos människor har sina särskilda

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer