{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

Storlek: px
Starta visningen från sidan:

Download "{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1"

Transkript

1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges på reell form Del 1 Modul 1 E fallande föremål med massan m påverkas av yngdkrafen mg och av e lufmosånd Den rearderande krafen är proporionell mo hasigheen v Enlig Newons andra lag är massan gånger acceleraionen lika med de krafer som påverkar föremåle Besäm föremåles hasighe efer lång id ösning: Vi säller upp differenialekvaionen dv = mg kv d Vi besämmer förs den saionära lösningen Den erhålles då derivaan är lika med noll Vi får v = mg k Sudera derivaans ecken och ria upp funkionens uppförande i faslinjen mg/k Efer lång id blir hasigheen lika med mg k SVAR: Föremåles hasighe efer lång id är mg k Modul y 1 (x) = x är en lösning ill differenialekvaionen x y x y + y =, x> Besäm en fundamenalmängd av lösningar sam ange den allmänna lösningen ösning: Vi ansäer y = xz(x), y = x z (x) + z(x), y = x z (x) + z (x) Insäning i differenialekvaionen ger x (x z (x) + z (x)) x(x z (x) + z(x)) + xz(x) = x z (x) + z (x) = Sä u(x) = z (x), u (x) = z (x) x u (x) + u(x) =, d (xu(x)) = dx Inegrera med avseende på x: xu(x) = C 1 och vi får z (x) = C 1 x Inegrera med avseende på x: z(x) = C 1 ln x + C y = xz(x) ger y = x(c 1 ln x + C ) = C 1 x ln x + C x En fundamenalmängd av lösningar besår av linjär oberoende lösningar Anale är lika med differenialekvaionens ordning I vår fall vå En fundamenalmängd är { x ln x, x } Den allmänna lösningen är en linjärkombinaion av de linjär oberoende lösningarna Vi får y = C 1 xln x + C x SVAR: En fundamenalmängd är { x ln x, x } Den allmänna lösningen y = C 1 xln x + C x Modul 3 å F(s) = e s vara en given laplaceransform Besäm orginalfunkionen f () då f () s Besäm även f (3) v { } = F(s)

2 ösning: Vi åerransformerar och får f () = ( )U( ), där U( ) Heavisides segfunkion f (3) = (3 )U(3 ) = 1U(1) = 1 SVAR: Orginalfunkionen f () = ( )U( ) och f (3) = 1 Del 11 Om ingen fisk as upp ur en sjö så varierar mängden fisk, y() [on], i sjön med iden [ år] enlig differenialekvaionen y = y a 1 y b, y >, där a = 4 [ år] och b = 8 [on] Nu börjar man fiska u c [on] fiskar per år, (c är en posiiv konsan) a Ange differenialekvaionen för y som då gäller b Ange de kriiska värde på c som ine får överskridas om de skall finnas någon jämvikslösning > c Då c ligger under dea kriiska värde finns de en sabil jämviksnivå y > för mängden fisk Besäm y som funkion av c ösning: a Den korrigerade differenialekvaionen blir y = y a 1 y b c Med de givna värdena på konsanerna får vi y = y 4 1 y y(8 y) y(8 y) 3c 8 c = c = = f (y) 3 3 b Jämvikslösning erhålles då f (y) = Då är y 8y +3c =, (y 4) = 16 3c = 3(5 c) Reella lösningar och sörre än noll erhålles då c 5 För c > 5 exiserar inga jämvikslösningar Jämvikslösningarna är y = 4 ± 3(5 c) c Vi besämmer den sabila jämvikslösningen y genom a sudera eckne hos f (y ) Jämvikslösningen är sabil om f (y ) < och insabil om f (y ) > 8 y f (y) = = 4 y och insäning av jämvikslösningarna ger (4 c) f (4 + 3(5 c)) = < sabil jämvikslösning 16 3(4 c) f (4 3(5 c)) = > insabil jämvikslösning 16 SVAR: a Den nya differenialekvaionen är y = b De kriiska värde på c är c = 5 c Jämviksnivån y = 4 + 3(5 c) y(8 y) 3 1 Undersök om f 1 (x ) = x och f (x ) = x är orogonala på inervalle (,) Besäm därefer konsanerna c 1 och c så a f 3 (x) = x + c 1 x + c x 3 blir orogonal mo både f 1 och f på samma inervall ösning: Vi undersöker om funkionerna är orogonala genom a förs besämma den inre produken mellan dessa Om den inre produken är lika med noll så är funkionerna orogonala c

3 f 1 (x ), f ( x ) = f 1 ( x )f (x )dx = xx dx = x 3 dx =, y udda funkion och origosymmerisk ineervall Den inre produken är lika med noll och således är funkionerna orogonala Vi skall bilda e orogonal sysem med hjälp av funkionerna f 1, f och f 3 Inre produken mellan f 1 och f 3 lika med noll ger: = f 1 (x),f 3 (x) = f 1 (x)f 3 (x )dx = x(x + c 1 x + c x 3 )dx Inre produken mellan f och f 3 lika med noll ger: = f (x ), f 3 (x ) = f (x )f 3 ( x )dx = x (x + c 1 x + c x 3 )dx = c 5 5 Vi erhåller följande sysem: 5 = c 1 5 f 3 (x) = x 5 1 x 3 c = 5 1 c 1 = är orogonal mo de givna funkionerna SVAR: f 1 (x ) = x och f (x ) = x är orogonala på inervalle (,) c 1 = och c = 5 1 ( +1) e 13 X = är en lösning ill syseme X = AX Besäm en fundamenalmaris ill e syseme sam besäm den lösning som uppfyller villkore X() = 5 ösning: För a besämma en fundamenalmaris ill vår sysem behövs vå linjär oberoende lösningar Vi besämmer förs sysemes maris och därefer dess egenvärden och egenvekorer Skriv sysemes maris enlig följande A = a b c d ( + )e Insäning av den givna lösningen i syseme ger = a b ( +1) e ( + 1)e c d e ( + )e Hyfsning ger = a( + 1)e + be eller + = (a + b) + a ( + 1)e c( + 1) e + de +1 (c + d) + c 1 = a + b a = = a b = 1 Idenifiering ger följande sysem:, 1 = c+ d c = 1 1 = c d = Marisen är A = 1 1 Egenvärdena fås ur ekvaionen = de(a I) = 1 1 = + 1 = ( 1) Vi erhåller e mulipel egenvärde =1 1,

4 1 1 Tillhörande egenvekor fås ur ekvaionen 1 1 K =, K = En ny lösning är X 1 = 1 1 e = e Vi har nu vå linjär oberoende lösningar e Dessa är X 1 = 1 1 e = e ( +1) e och den givna lösningen X e = e En fundamenalmaris är Φ = e ( +1)e, observera a de Φ = e e e Den allmänna lösningen är en linjärkombinaion av de linjär oberoende lösningarna Vi får X = a e ( +1)e + b Besäm de godyckliga konsanerna e e Villkore X() = 5 ger: X() = a b 1 = 5, a b = 3 (3 + 5)e Insäning ger X = (3 + )e SVAR: En fundamenalmaris ill syseme är Φ = e ( +1)e e e (3 + 5)e Den lösning som uppfyller villkore är X = (3 + )e 14 Skriv differenialekvaionen d x d = x x + 1 3y dx som e auonom sysem d Sudera syseme genom a hia alla kriiska punker, besämma deras yp(nod, sadelpunk, spiral, cenrum) och avgöra huruvida de är sabila eller insabila ösning: dx Vi säer y = dx dy och d d = d x d = y varvid följande sysem erhålles: d dy d = x x + 1 3y y Vi sarar med a besämma var angenvekorn är lika med noll Dea ger oss de kriiska(saionära) punkerna Därefer suderar vi de kriiska punkernas karakär genom a undersöka Tayloruvecklingen kring akuell kriisk punk, med andra ord en linjarisering Jacobimarisen blir då e vikig redskap = y Tangenvekorn lika med nollvekorn ger: (x, y) = (,) = x x + 1, 3y y (x,y)=( 1,) Två kriiska punker Jacobimarisen ges av marisen x 9y Insäning av respekive kriisk punk ger:

5 (x, y) = (,) Marisen A = har komplexa egenvärden med posiiv realdel Egenvärdena erhålles ur ekvaionen = = = ( 1 4 ) Dessa är = 1 ± i 15 4 Den kriiska punken (,)är en insabil spiral Desamma gäller även för de icke-linjära syseme (x, y) = ( 1,) Marisen B = har skilda egenvärden och olika ecken Egenvärdena erhålles ur ekvaionen = = 1 1 = ( 1 4 ) Dessa är = 1 ± 17 4 Den kriiska punken ( 1,) är en sadelpunk och därmed insabil Desamma gäller även för de icke-linjära syseme SVAR: De kriiska punkerna är (,) och (-1,) Den kriiska punken (,)är en insabil spiral Den kriiska punken ( 1,) är en sadelpunk och därmed insabil 15 å u(x,) vara emperauren i en smal sav med längden u Vidare gäller a x hu = u, <x<, >, h är en konsan Besäm emperauren u(x,) då begynnelseemperauren är f (x) och savens ändpunker är isolerade ösning: Vi separerar variablerna: u(x, ) = X (x )T( ) Insäning i den pariella differenialekvaionen ger: X (x)t() hx (x )T() = X (x) T () X (x) Dividera med X (x)t() : X (x) = T () T() + h = konsan = X (x) X(x) = Vi erhåller e sysem av linjära okopplade differenialekvaioner: T () ( h)t() = "T-ekvaionen" har lösningen: T() = Ce ( h) För "X-ekvaionen" behandlas re olika fall: >, = och < >, =, R = <, =, R X(x)=A 1 e x +B 1 e x X (x) = A x + B X (x) = A 3 cos x + B 3 sin x u Savens ändpunker är isolerade innebär a x (,) = u (, ) = x Tillsammans med variabelseparaionen ger dea a: X ()T() = X ()T() = Dea skall gälla för alla : X () = X () = >, =, R = <, =, R

6 X (x ) = (A 1 e x B 1 e x ) X (x ) = A X (x ) = ( A 3 sin x + B 3 cos x) Insäning av ändpunkerna ger: >, =, R = <, =, R = X () = (A 1 B 1 ) = X () = A = X () = (B 3 ) = X () = (A 1 e B 1 e ) = X () = A = X () = ( A 3 sin + B 3 cos ) Endas den riviala lösningen X (x) = B B 3 = X (x) = A = n 3 Mosvarande "T-lösningar" blir: >, =, R = <, =, R T() = C e h T() = Ce ( ( n ) h ) Vi har erhålli vå uppsäningar med lösningar = <, =, R u(x,)=b C e h u(x,) = A 3 n C ( 3 e( ) h) injärkombinaioner av lösningar är lösning Den lösning som uppfyller de givna randvillkoren är på formen: u(x,) = a e h + a n e (( n ) + h) n=1 De åersår a besämma koefficienerna Begynnelsevillkore u(x,)=f(x) ger: f (x) = u(x, )= a + a n n =1 Koefficienerna är: a = f (x )dx och a n = x f (x )cosn dx SVAR: Savens emperaur är u(x,) = a e h + a n e (( n ) + h) n=1 a = f (x )dx och a n = x f (x )cosn dx

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Modellering av Dynamiska system Ställ frågor!

Modellering av Dynamiska system Ställ frågor! Modellering av Dynamiska sysem -2014 Säll frågor! Beng Carlsson bc@i.uu.se Rum 2211 Inrodukion #1 Sysem och deras modeller Dynamiska och saiska sysem Användning av modeller Maemaisk modellering E modelleringsexempel

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd. Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags... Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant LÖSNINGSFÖRSLAG Fysik: Fysik och Kapiel 4 4 nergi nergiprincipen 4. nergin bearas. Allså är före efer,9,, ilke ger,9,,j, 6 J Sar:,6 J 3 3 Arbee, effek och erkningsgrad 4. San: Uför arbee är lika sor so

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.

Läs mer

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att

Läs mer

System, Insignal & Utsignal

System, Insignal & Utsignal Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,

Läs mer

Lösningar till tentamen i Kärnkemi ak den 21 april 2001

Lösningar till tentamen i Kärnkemi ak den 21 april 2001 Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB Rörelse Hur kan en acceleraion ara negai? Vad innebär de a en rörelse är likformig? Kan å händelser ara samidiga, men ändå ine? Vilken acceleraion får en fri fallande kropp? Vad menas med likformig accelererad

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

( ) är lika med ändringen av rörelse-

( ) är lika med ändringen av rörelse- LÖSNINGAR TILL PROBLEM I KAPITEL 9 LP 9. Impulslagen skris allmän Fd p() p( ) β och ualas: är lika med ändringen a rörelse- krafens impuls under idsineralle, mängden under samma idsinerall. y I dea problem

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004. Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Inbyggd radio-styrenhet 1-10 V Bruksanvisning

Inbyggd radio-styrenhet 1-10 V Bruksanvisning Version: R 2.1 Ar. r.: 0865 00 Funkion Radio-syrenheen möjliggör en radiosyrd ändning/ släckning och ljusdämpning av en belysning. Inkopplingsljussyrkan kan sparas i apparaen som memory-värde. Bejäning

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik. Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn

Läs mer

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning VA-TAXA 2000 Taxa för Moravaen AB:s allmänna vaen- och avloppsanläggning Taxa för Moravaen AB:s Allmänna vaen- och avloppsanläggning 4 4.1 Avgif as u för nedan angivna ändamål: Anagen av Moravaen AB:s

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

Steg och impuls. ρ(x) dx. m =

Steg och impuls. ρ(x) dx. m = Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

Kolla baksidan på konvolut för checklista Föreläsning 6

Kolla baksidan på konvolut för checklista Föreläsning 6 0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28 43.036/1 NR 10: Regulaor för lufkondiionering (värme/kyla) Kompak regulaor för lufkondiionering med pulsade ugångar för 2- och 4-rörs sysem för värme och kyla i separaa rum. Lämplig för alla yper av byggnader.

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svesning Examensarbee uför i Reglereknik av Andreas Pilkvis LiTH-ISY-EX-- Linköping Analys och modellering av ljusbåglängdsregleringen

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Inflation och penningmängd

Inflation och penningmängd EKONOMSK DEBAT BO AXELL nflaion och penningmängd Vilka är inflaionens besämningsfakorer? Dea är själva ugångspunken for flerale ariklar i dea emanummer.. Somliga hävdar a inflaionen speciell i e lie land

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 LÖSNINGSÖRSLAG ysik: ysik och Kapiel 3 3 Rörelse och krafer Hasighe och acceleraion 3. ar är hasigheens sorlek. Sar: alsk 3. Medelhasigheen fås so Sar 5, /s 3.3 Medelhasigheen fås so s 5 /s 5, /s 5, 6

Läs mer

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring. Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?

Läs mer

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning Hans Andersson (FP), ordförande i Tiohundra nämnden varanna år och Karin Thalén, förvalningschef TioHundra bakom solarna som symboliserar a ingen ska falla mellan solar inom TioHundra. Ingen åervändo TioHundra

Läs mer

Pensionsåldern och individens konsumtion och sparande

Pensionsåldern och individens konsumtion och sparande Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel

Läs mer

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2 Frekvensanals Frekvenssvar Ssemeknik/Processreglering Föreläsning 8 Bode- och Nqisdiagram Sabilie och sabiliesmarginaler Läsanvisning: Process Conrol: 6. 6. Frekvensanals Sdera hr ssem reagerar på signaler

Läs mer

Föreläsning 8. Kap 7,1 7,2

Föreläsning 8. Kap 7,1 7,2 Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo. 3D vaenanimering Joakim Julin Deparmen of Compuer Science Åbo Akademi Universiy, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.fi Absrak Denna arikel kommer a presenera e anal olika algorimer för a

Läs mer