Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Storlek: px
Starta visningen från sidan:

Download "Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl"

Transkript

1 KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, , kl Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler. Poängen på dem är den högsta av uppgiftens bedömning och resultatet på eventuell motsvarande kontrollskrivning (eller inlämningsuppgift) som gjorts under kursens gång. Betygssättning: Tentamen blir godkänd (betyg A E) om och endast om modulerna givit minst 8 poäng och ingen modul givit 0 poäng. Godkänd tentamen och 3 30 poäng ger betyget A, 9 poäng ger betyget B, 6 8 poäng ger betyget C, 5 poäng ger betyget D och 8 poäng ger betyget E. Den som ej är godkänd men fått minst 6 poäng på moduluppgifterna får betyget Fx och har rätt att komplettera till betyget E. Kontakta Bengt eller Olle för närmare information om kompletteringen! För äldre teknologer ges betygen 5, 4, 3, K, U med krav som för A, B/C, D/E, Fx respektive underkänt. För att ge full poäng måste lösningarna vara ordentligt motiverade. Ange vad införda beteckningar som inte är standard står för.. Bestäm alla lösningar till differentialekvationen y + y 3x e x y. (p) Lösning: En lösning är y(x) 0 för alla x. Då y 0 sätts z y y enligt receptet för Bernoullis ekvation. Med y z blir y z z ; insättning ger sedan z z + z 3x e x z z z 3x e x.

2 f koefficienten framför z F f dx x e F e x ; multiplikation med denna integrerande faktor ger z e x + z ( e x ) 3x d dx (z e x ) 3x z e x x 3 + C z e x (C x 3 ) y SVAR: y 0 och y e x (C x 3 ).. Bestäm alla lösningar till differentialekvationen e x C x 3 då x3 C. y y + y ex x då x > 0. (p) Lösning: y hom Karakteristiska ekvationen r r + (r ) 0 r y hom (x) C e x + C xe x. y part Ansatsen y u (x) e x + u (x) xe x ger y (u + u x)e x + u e x + u ( + x)e x. Om vi sätter u + u x 0 så blir y u e x + u ( + x)e x + u e x + u ( + x)e x. Insättning i ekvationen ger sedan e x u + ( + x)u + u + ( + x)u u ( + x)u + u + xu } ex x u + ( + x)u x. Vi får alltså systemet som lätt löses: u + xu 0, () u + ( + x)u x, () () () u x u ln x + C ; () u xu u x + C. Detta ger till slut y u x + u xe x C e x + C xe x xe x + ln x xe x A e x + B xe x + ln x xe x.

3 3. Beräkna y(π) då y(t) satisfierar y + 9y 8 θ(t π/) cos 3t, y(0) 7, y (0) 9, (p) där θ(t) Heavisidefunktionen the unit step function U(t). Lösning: Låt cos x f(x 3π/). Med u x 3π/ x u + 3π/ blir f(u) cos(u + 3π/) cos u cos(3π/) sin u sin(3π/) sin u cos x sin(x 3π/) cos 3t sin 3(t π/). Därmed kan ekvationen skrivas som y + 9y 8 θ(t π/) sin 3(t π/). Laplacetransformering ger sedan s Y (s) 7s 9 + 9Y (s) 8 e π s 3 s + 9 (s + 9)Y (s) 7s e π s 3 s + 9 s Y (s) 7 s y(t) 7 cos 3t + 3 sin 3t s π 54e s (s + 3 ) + (sin 3(t π/) 3(t π/) cos 3(t π/)) θ(t π/). Alltså blir y(π) (( ) 0) Bestäm lösningen till problemet d x 5 x, x(0) y(0), dt y y och visa att denna är periodisk. (p) Lösning: Man kan använda både Laplacetransformering och egenvektorsmetoden låt oss använda den senare här. λ 5 0 det λ + 4 λ ±i. λ 3

4 För egenvärdet i fås λ 5 i 5 + i 5 λ i + i 5 5( i) multiplicera rad med i} ( i) ( i) i egenvektorn K. 0 0 Detta ger lösningen ( x i y ) e it ( cos t + sin t cos t i (cos t + i sin t) ) sin t cos t + i, sin t varur man får den allmänna lösningen x cos t + sin t A + B y cos t sin t cos t. sin t x(0) A B och y(0) A A och B 0, det vill säga x(t) cos t + sin t y(t) cos t. Från detta ser vi att t (x(t), y(t)) har perioden π vilket innebär att lösningskurvan blir sluten. 5. Låt f(x) 3 + x då 4 < x < 0, 3 + x då 0 < x < 4. Bestäm f:s Fourierserie samt ange denna series summa då x 6 respektive x 0. (p) Lösning: 0 < x < 4 f( x) 3+( x) (3+x) f(x) f 4

5 är udda bara sinustermer i Fourierserien f(x) b n sin nπx 4, där Så b n 4 n 4 4 f(x) sin nπx 4 4 dx (3 + x) sin nπx 0 4 dx [ 4 ( (3 + x) nπ cos nπx ) ] nπ 0 (3 7 cos nπ) + nπ nπ 4 [ sin nπx ] 4 nπ 4 0 f(x) n (3 7( ) n ) nπ sin nπx 4 cos nπx 4 dx nπ (3 7( )n ). på ( 4, 4). Serien i högerledet h(x) en 8-periodisk funktion på (, ) som är lika med f(x) då 4 < x < 4, varför h(6) h( + 8) h( ) f( ) 5, och h(0) h(4 + 8) h(4) 0 eftersom sin nπ4 sin nπ 0 för alla n, 4 eller h(4) medelvärdet av gränsvärdena från vänster och höger (7 7) Visa att y p e x är en lösning till differentialekvationen xy + ( x)y + (x )y 0, där x > 0, och bestäm sedan den allmänna lösningen. (4p) Lösning: Insättning av y p y p y p e x e x x + ( x) + (x )} 0, vilket STÄMMER. Ansatsen y u(x)e x y (u + u)e x y (u + u + u)e x ; insättning ger sedan e x xu + xu + xu + ( x)u + ( x)u + (x )u} 0 xu + u 0 d dx (u x) 0 u A u A ln x + B x y (A ln x + B)e x. 5

6 7. Lös problemet t y(t) t + t 0 e u y(t u) du, y(0) 7, då t 0. Lösning: Laplacetransformering (4p) d ds Y (s) s 3 + s + Y (s) Y (s) + s + Y (s) s 3, som alltså är linjär av första ordningen. f s + F ln(s + ) ef s + ; multiplikation med denna integrerande faktor ger Y (s) (s + ) + Y s + d s 3 ds (Y (s) (s + )) s s 3 Y (s) (s + ) s + s + C Y (s) s(s + ) + s (s + ) + C s + y(t) ( e t ) + e t + t + C e t. Konstanten C bestäms av begynnelsevillkoret: 7 y(0) C C 7. SVAR: y(t) + t + 6 e t. 8. Lös systemet då t > 0. Lösning: d dt x y ( 4 ) x + y t (4p) 6

7 Homogena problemet A 0 det(a λi) 4 λ 4 λ λ 0 λ λ 0 A λi, med egenvektorn K lösningen e 0t. En andra lösning fås som K t+p, där P är en lösning till AP K, det vill säga p p 4 p 0. p Om till exempel p 0 blir p, och vi får då lösningen 0 t t +, t vilket ger den allmänna lösningen x t C y + C t Ur denna fås fundamentalmatrisen t Φ(t). t ( t t Icke-homogena problemet Lösningen ges av ( x y ) Φ(t) Φ (t) t dt. ) ( C C ). t t det Φ(t) t t Φ (t) t + t t + Φ (t) t t Φ (t) ( ) t + t + C t dt. t ln t + C 7

8 Så x t C t t + + t y t C t t ln t ( ) t t C + C + + t t ln t t t. + t t ln t + ln t 9. Bestäm lösningen till följande värmeledningsproblem för en smal stav av längden π, som är värmeisolerad i ändpunkterna och har värmeledningskoefficienten k: PDE u t k u, x 0 < x < π, t > 0; RV u u (0, t) (π, t) 0, x x t > 0; (4p) BV u(x, 0) sin x, 0 x π. Lösning: Separationsansatsen u(x, t) X(x)T (t) i PDE + RV ger X(x)T (t) k X(x)T (t) k X (x)t (t) k X(x)T (t) X (x) X(x) T (t) k T (t) som vi kallar för µ X (x) + µx(x) 0 T (t) + kµt (t) 0. RV X (0) X (π) 0. Vi får därför följande egenvärdesproblem för X(x): X (x) + µ X(x) 0, µ > 0 : X (0) X (π) 0. en konstant, λ µ > 0 X (x) + λ X(x) 0 X(x) A cos λx + B sin λx X (x) Aλ sin λx + Bλ cos λx. och 0 X (0) Bλ B 0 X (x) Aλ sin λx; 0 X (π) Aλ sin λx. Icke-trivial lösning A 0 sin λπ 0 λ n,, 3,... egenvärdena µ n n och egenfunktionerna X n (x) cos nx för n,, 3,... 8

9 µ 0 : X (x) 0 X (x) A; 0 X (0) A X (x) 0 X konstant. Så vi får egenvärdet µ 0 och egenfunktionen X 0 (x) cos(0 x). µ < 0: Analoga räkningar visar att vi i detta fall bara får noll-lösningen. SLUTSATS: µ n n och X n (x) cos nx för n 0,,, 3,... För varje n får vi sedan T n(t) + k n T n (t) 0 T n (t) C n e knt. Så u n (x, t) cos(nx) e knt för n 0,,, 3,... SUPERPOSITIONS- PRINCIPEN ger därefter den allmänna lösningen till PDE +RV som u(x, t) a n cos(nx)e knt, där a n är godtyckliga konstanter. n0 Konstanterna a n bestäms till slut av begynnelsevillkoret u(x, 0) sin x cos x : u(x, 0) a n cos(nx) cos x a 0, a n0 och övriga a n 0 u(x, t) cos x e 4kt. 0. Bestäm alla (reella) lösningar till differentialekvationen dy dx y på (, ). Observera att man inte får dividera med noll och att dy/dx 0 överallt! (4p) Lösning: dy/dx reell y 0 y y. y(x) och y(x) för alla x är två lösningar. Då < y < kan vi separera variablerna: dy dy dx arcsin y x a y sin(x a), y 9

10 där a är en godtycklig konstant. dy/dx 0 största intervallet omkring x a där denna funktion är en lösning är π x a π a π x a + π. Genom skarvning fås sedan en lösning på (, ) för varje a: x a π/, f a (x) sin(x a) a π/ < x < a + π/, x a + π/. SVAR: y(x) f a (x) för a R och y(x) ±. 0

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y 1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t), Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Fouriers metod, egenfunktionsutvecklingar.

Fouriers metod, egenfunktionsutvecklingar. Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,

6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1, Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >= KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0. UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december 2017 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära betygsgränser:

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3

1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3 Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant

Läs mer

MVE500, TKSAM-2. (c) a 1 = 1, a n+1 = 4 a n för n 1

MVE500, TKSAM-2. (c) a 1 = 1, a n+1 = 4 a n för n 1 MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6-- kl. 8.3.3 Tentamen MVE5, TKSAM- Telefonvakt: Olof Giselsson 3 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista

Läs mer

A dt = 5 2 da dt + A 100 =

A dt = 5 2 da dt + A 100 = Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2 Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.

Läs mer

Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.

Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4. Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras

Läs mer

IV, SF1636(5B1210,5B1230).

IV, SF1636(5B1210,5B1230). Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad

Läs mer

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning. Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och

Läs mer

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T. Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:

Läs mer

Tentamen i Komplex analys, SF1628, den 21 oktober 2016

Tentamen i Komplex analys, SF1628, den 21 oktober 2016 Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg)

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg) ATM-Matematik Mikael Forsberg och Yury Shestopalov 734-4 3 3 (Mikael Forsberg) Campus och distans Flervariabelanalys mag3 7 6 5 Skrivtid: 9:-4:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1 Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656. Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy

Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt Tentamensskrivning i Matematik IV, 5B0. Onsdagen den 0 oktober 004, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att

Läs mer

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område

Läs mer

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från

Läs mer

7 Extremvärden med bivillkor, obegränsade områden

7 Extremvärden med bivillkor, obegränsade områden Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden

Läs mer

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Kurs 5B1200, Sammanfattningar av lektioner för M2 läsåret 1998/99. Björn Gustafsson

Kurs 5B1200, Sammanfattningar av lektioner för M2 läsåret 1998/99. Björn Gustafsson Kurs 5B1200, Sammanfattningar av lektioner för M2 läsåret 1998/99. Björn Gustafsson Lektion 1 En separabel differentialekvation är en som kan skrivas på formen f(x)dx = g(y)dy. Lösningar på implicit form

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen

Läs mer