, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

Storlek: px
Starta visningen från sidan:

Download ", x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1."

Transkript

1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att följa Svaren skall ges på reell form Fordringar: 3: 5-9p; 4: -4p; 5: 5p-, inklusive bonus Uppgifterna:,4, 8 ger 3 poäng; - 3, 5, 7 ger 4 poäng, 6 ger 5 poäng Bestäm den lösning till differentialekvationen x y + 3xy = sin x x som uppfyller villkoret y( ) =, x > Differentialekvationen omformas till x 3 y + 3x y = sinx Vänstra ledet är en derivata (x 3 y ) = sinx Integrera map x : x 3 y = cosx + C Villkoret ger = cos + C, C = Insättning ger: x 3 cosx y = cosx, y = SVAR: Den lösning som uppfyller differentialekvationen och villkoret är y = cosx x 3 x 3 En tavla som är till salu påstås vara 4 år gammal Pigment i målningen innehåller vitt bly med halveringstiden år Noggranna mätningar ger vid handen att 3/3 av den ursprungliga mängden vitt bly har sönderfallit Antag att sönderfallshastigheten är proportionell mot mängden vitt bly Är en tavelskojare i farten? Avgör tavlans ålder Låt N(t) vara mängden vitt bly i målningen vid en godtycklig tidpunkt t Sönderfallshastigheten är proportionell mot mängden vitt bly, dvs dn dt = kn där k är proportionalitetsfaktorn Den allmänna lösningen är N(t) = Ce kt Sätt för t = N = N Vi erhåller:n(t) = N e kt Halveringstiden är år vilket insatt i lösningen ger N = N ek k = ln = ln, N(t) = N e t ln = N t Vi bestämmer tiden t då N = ( 3 3 )N = t 3 N : 3 N = N, 5 = t, t = år SVAR: Det är en tavelskojare i farten, ty tavlans ålder är år, ej 4 år 3Sök allmänna lösningen till X = AX, där A = Vad är hastighetsvektorn då X = 4 Avgör även en partikels öde om den vid tiden t = 5 befinner sig i punkten (,4) Vi börjar med att bestämma egenvärden och därefter egenvektorer till matrisen A = det(a I) = 4 = ( ) 4 = ( + )( ) = (3 )( ) Egenvärdena blir = 3, = Bestäm motsvarande egenvektorer K, där (A I)K = = 3 4 K =, K = k, k R = 4 K =, K = k, k R 4?

2 Motsvarande lösningar blir: = 3 : X = e3t = X = e t Den allmänna lösningen erhålles som linjärkombinationer av X och X X = c X + c X = c e 3t + c e t = e3t e t c e 3t e t c Hastighetsvektorn X = AX för X = 4 blir X = 4 4 = 3 Observera att punkten (,4) ligger på den räta linje vars riktningsvektor ges av Då t växer går partiklen mot origo SVAR: Den allmänna lösningen X = c e 3t + c e t = Hastighetsvektorn X = 3 e3t e 3t e t c e t c Partikeln går mot origo då t växer obegränsat 4 Antag att (x +) y + x y y =, x > En lösning till denna ekvation är y(x) = e x Bestäm allmänna lösningen En lösning är given Använd reduktion av ordning Insättning av y = e x z, y = e x z e x z, y = e x z e x z + e x z i differentialekvationen ger: (x +)(e x z e x z + e x z) + x (e x z e x z) e x z =, (x +) z + z ( (x +)+ x) = Reducera ordningen Sätt: u = z, u = z (x +) u + u( x ) = u u = x + x + = + x + Integrera map x: ln u = x + ln x + + ln C, u =±C (x +)e x = C (x +)e x, z = C (x +)e x Integrera map x: z = C xe x + C 3 y = e x z = e x (C xe x + C 3 ) = C x + C 3 e x SVAR: Den allmänna lösningen är y = C x + C 3 e x 5 Ett mekaniskt system styrs av ekvationen x + 5 x + 4x = b(t), där b(t) =, < t <, för övrigt Systemet startar i vila x() =, x () = Bestäm x(t) för t > Tolka den givna differentialekvationen fysikaliskt Laplacetransformera differentialekvationen s X(s) sx() x () + 5(sX(s) x()) + 4X(s) = s e s s e s, (s + 5s + 4)X(s) = s (e s e s ) X(s) = s(s +)(s + 4) (e s e s ) = ( 4 s 3 s + + s + 4 )(e s e s ) Återtransformera: x(t) = U(t )( 4 3 e (t ) + e 4( t ) ) U(t )( 4 3 e (t ) + e 4( t ) ) Differentialekvationen representerar rörelsen för en partikel som påverkas av tyngdkraft, dämpning, fjäderkraft samt en kraft Kraften är noll utom i intervallet från ett till två Differentialekvationen representerar även laddningen i en kondensator i en seriekopplad elektrisk krets innehållande motstånd, kondensator, spole samt en spänningspuls SVAR: Den sökta lösningen x(t) = U(t )( 4 3 e (t ) + e 4( t ) ) U(t )( 4 3 e (t ) + e 4( t ) )

3 6 a) En lösning till begynnelsevärdesproblemet y = y 3, y() = ges av y Är lösningen entydig? Motivera! b) y = x 3 är en lösning till y = 3y 3, y() = Är lösningen entydig? Motivera! c) Ange det största intervall i vilket lösningen till ekvationen y = 3x (y +), y() = existerar Är lösningen entydig? Motivera! a) En lösning är y och den är entydig, ty f (x,y) = y 3 och b) f y = 3y är kontinuerliga Lösningen är ej entydig, ty en lösning är y = x 3 och en annan lösning är y c) Vi börjar med att lösa differentialekvationen, vilken är separabel Omformning ger: y + y = 3x Integrera map x : arctan y = x 3 + C Villkoret ger: C = arctan = 4 Differentialekvationens lösning ges av: y = tan(x ) Det definitionsområde som innehåller x = är: x: < x 3 + < 4 = x: 3 4 < x 3 < 4 = x: 3 3 < x < 4 Lösningen är entydig, ty f (x,y) = 3x (y +) och SVAR: a) Entydig lösning b) Ej entydig lösning 3 4 f y = 6x y är kontinuerliga c) Det största intervallet i vilket lösningen existerar är x: 3 3 < x < 4 7 Bestäm och klassificera de kritiska punkterna till systemet: 3 4 x = 3x + y + y = x y Entydig lösning Bestäm först de kritiska punkterna I de kritiska punkterna är tangentvektorn lika med nollvektorn Tangentvektorn x y = 3x + y + x y Vi erhåller följande icke-linjära ekvationssystem: 3x + y + = x 3x + = x y, y =±x, (x )(x ) = y =±x De kritiska punkterna är: (,), (, ), (,) och (, ) För att klassificera de kritiska punkterna studeras dessa lokalt Vi kan då antingen införa ett nytt koordinatssystem med origo i den kritiska punkten och ta med den linjära delen av systemet eller direkt bestämma Jacobimatrisen i den kritiska punkten Vi väljer det senare Tangentvektorn x y = 3x + y + 3 y = g(x) x y ger oss Jacobimatrisen g (X) = x y Insättning av respektive punkt ger oss en matris, vars egenvärden avgör typ och stabilitet

4 Egenvärdena kan erhållas med hjälp av determinanten och spåret :, = ± a) Punkten (,) ger g (,) = 3 = och spåret = 5 Skilda reella egenvärden som är negativa innebär att den kritiska punkten är en stabil nod 3 b) Punkten (, ) ger g (, ) = = och spåret = 4 Skilda reella egenvärden med olika tecken innebär att den kritiska punkten är en sadelpunkt och därmed instabil c) Punkten (,) ger g (,) = = 4 och spåret = 7 Skilda reella egenvärden med olika tecken innebär att den kritiska punkten är en sadelpunkt och därmed instabil d) Punkten (, ) ger g (, ) = = 4 och spåret =, 4 = 6 = 5 < Komplexa egenvärdena med med spåret > innebär att den kritiska punkten är en instabil spiralpunkt SVAR: (,) är en stabil nod (, ) och (,) är sadelpunkter och därmed instabila (, ) är en instabil spiralpunkt u 8 Lös Laplaces ekvation x + u = i rektangeln < x <, <y < med randvärdena y u(,y) = u(,y ) = u(x,) =, u(x,) = Vi löser problemet med variabelseparationsmetoden Sätt: u(x,y) = X(x)Y (y) Insåttning i differentialekvationen ger: X (x)y (y ) + X (x) Y (y ) = X (x) Dividera med X(x)Y (y): X (x) = Y (y) = konstant =, R Y(y) Den partiella differentialekvationen övergår i ett system av ordinära differentialekvationer X (x) X(x) = Y (y ) + Y (y) = För "X-ekvationen" behandlas tre olika fall: >, = och < >, =, R = <, =, R X (x) = A e x + B e x X (x) = A x + B X (x) = A 3 cos x + B 3 sin x Variabelseparationen och villkoren u(,y) = u(,y ) = ger X ()Y (y) = X( )Y (y) = Detta skall gälla för alla aktuella y Ger att X () = X( ) = >, =, R = <, =, R = X () = A + B = X () = B = X () = A 3 = X ( ) = A e + B e = X( ) = A + B = X( ) = A 3 cos + B 3 sin Endast den triviala lösningen = n, n N X (x) = B 3 sin nx Endast den triviala lösningen Detta system har icke-triviala lösningar då Vi erhåller icke-triviala lösningar endast då separationskonstanten =, R X (x) + X (x ) = Systemet är då: Y (y ) Y(y) =

5 Nu över till "y-ekvationen" Den har lösningen: Y (y) = Ce ny + De ny Villkoret u(x,) = och variabelseparationen ger: X(x)Y () =, vilket skall gälla för alla aktuella x Vi erhåller: Y () = Detta ger oss: = Y () = C + D, D = C Y (y) = C(e ny e ny ) Superpositionsprincipen ger: u(x,y) = a n (e ny e ny )sin nx Det återstår att bestämma a n Det resterande villkoret u(x,) = ger: = u(x,) = a n (e n e n )sin nx n= Här är a n (e n e n ) fourierkoefficienterna för den udda funktion som på intervallet (, ) är lika med Vi erhåller: a n (e n e n ) = sin nxdx = cosnx n cos n u(x,y ) = n(e n e n ) (eny e ny )sin nx n= SVAR: Den sökta lösningen är: u(x,y ) = n = [ ] = cosn n cos n n(e n e n ) (eny e ny )sin nx n=, a n = cos n n(e n e n )

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004. Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1

Läs mer

Tentamen i Matematik 1 DD-DP08

Tentamen i Matematik 1 DD-DP08 Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas

Läs mer

Lineära system av differentialekvationer

Lineära system av differentialekvationer Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

9.1 Mer om differentialekvationer

9.1 Mer om differentialekvationer 9.1 Mer om differentialekvationer 9.1.1 Olika typer Ordinär differentialekvationer.ode innehåller derivator med avseende på endast en variabel. Partiella differentialekvationer.pde innehåller (partiella)

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

Ordinära differentialekvationer

Ordinära differentialekvationer Elementärt om Ordinära differentialekvationer Anders Källström 2002 01 15 Innehåll 1 Introduktion 4 2 Första ordningens differentialekvationer 8 2.1 Separabla ekvationer....................................

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 = MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

Linjära differentialekvationer av andra ordningen

Linjära differentialekvationer av andra ordningen Linjära differentialekvationer av andra ordningen Matematik Breddning 3.2 Definition: En differentialekvation av typen y (x) + a(x)y (x) + b(x)y(x) = h(x) (1) där a(x), b(x) och h(x) är givna kontinuerliga

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

STABILITET FÖR ICKE-LINJÄRA SYSTEM

STABILITET FÖR ICKE-LINJÄRA SYSTEM Armin Halilovic: ETRA ÖVNINGAR SF1676 Stabilitet för icke linära sstem Sida 1 av 8 STABILITET FÖR ICE-LINJÄRA SYSTEM Linarisering och lokal stabilitet Låt d d ss 1 vara ett autonomt icke-linärt sstem där

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

Kapitel 5: Primitiva funktioner

Kapitel 5: Primitiva funktioner Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

8.4. Integration av trigonometriska uttryck

8.4. Integration av trigonometriska uttryck 68 8 PRIMITIVA FUNKTIONER 8.4. Integration av trigonometriska uttryck Exempel 8.. Bestäm sin 3 x + cos x dx. Trigonometriska ettan tillsammans med ett variabelbyte ger sin 3 x cos + cos x dx = x ( cos

Läs mer

Partiella differentialekvationer (TATA27)

Partiella differentialekvationer (TATA27) Partiella differentialekvationer (TATA27) Linköpings universitet Vår termin 2015 Inneåll 1 Introduktion 1 1.1 Notation............................................. 1 1.2 Differentialekvationer......................................

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-11532 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet 2 december 21 G Gripenberg (Aalto-universitetet) Mat-11532 Grundkurs i matematik 3-II 2 december 21 1 / 39 1 Ekvationssytem och matrisräkning

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-53 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet december Ekvationssytem och matrisräkning 3 Gauss metod, LU-uppdelning 3 Egenvärden 4 Projektioner 9 Principalkomponenter Differentialekvationssystem

Läs mer

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier KAPITEL 5 Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier Vi inleder med några förberedande exempel. 5.. Cauchys ekvation Den homogena Euler-Cauchys ekvation (Leonhard Euler och

Läs mer

Kap Dubbelintegraler.

Kap Dubbelintegraler. Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Vi skall här studera första ordningens homogena system av linjära dierentialekvationer

Vi skall här studera första ordningens homogena system av linjära dierentialekvationer Kapitel System av ordinära dierentialekvationer Vi skall här studera första ordningens homogena system av linjära dierentialekvationer med konstanta koecienter. Huvudvikten läggs vid fallet att systemets

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Kapitel 7. Kontinuitet. 7.1 Definitioner

Kapitel 7. Kontinuitet. 7.1 Definitioner Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget

Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget Matematik Chalmers tekniska högskola 0-08-7 kl. :00-8:00. Tentamen TMV036 Analys och linjär algebra K, Kf, Bt, del B Telefonvakt: Hossein Raufi, telefon 0703-08830 Inga hjälpmedel. Kalkylator ej tillåten.

Läs mer

Omtentamen MVE085 Flervariabelanalys

Omtentamen MVE085 Flervariabelanalys Omtentamen MVE85 Flervariabelanalys 26-8-26 kl. 8.3 2.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Malik, telefon: anknytning 5325 Hjälpmedel: endast bifogat formelblad,

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer