Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.

Storlek: px
Starta visningen från sidan:

Download "Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004."

Transkript

1 Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars Gausselimination ger: b b/ b 2 3 b/3 1 b/ b Lösningar existerar endast då b/3 9, dvs då b 27. Lösningarna fås ur (sätt t, b 27): y t t + 8, x 2y + 3t + 3 t 13. Svar: b 27, x t 13, y t + 8, t. 2. Punkten (3, 1, 2) och linjen (x, y, ) (1, 1, 1)+t(2, 1, 3) skall ligga i det sökta planet. Därmed ligger också skillnadsvektorn s (3, 1, 2) (1, 1, 1) (2,, 1) och linjens riktningsvektor v (2, 1, 3) i planet. Planets normal fås alltså som kryssprodukten s v ē 1 ē 2 ē ( 1, 2 6, 2 ) ( 1, 4, 2) n Planets ekvation blir därför n (x, y, ) n (1, 1, 1) x 4y + 2 ( 1, 4, 2) (1, 1, 1) 3. Svar: x + 4y 2 3. V.g. vänd!

2 3. Om u(x, y) F (r) blir u x F (r) r x. På samma sätt blir u y F (r) r y. Men r x x x2 + y 2 På samma sätt r y y r. Man får alltså x u x rf (r). 2x 2 x 2 + y 2 x r. u +y y xf (r) x r +yf (r) y r F (r) x2 + y 2 r F (r) r2 r 4. f(x, y) x 4 + xy + 2y 2. (1) f x 4x 3 + y (2) f y x + 4y ger de stationära punkterna: y x/4 ur (2) ger i (1) : 4x 3 x/4 dvs. (3) x(16x 2 1) Ur (3) får man x som ger y eller x 1/4 som ger y 1/16 eller x 1/4 som ger y 1/16. De stationära punkterna är alltså (,), (1/4,-1/16) och (-1/4,1/16). Fortsatt derivering ger f xx 12x 2, f xy 1 och f yy 4. Ur detta får man punkternas karaktär genom att studera andraderivatornas värden i punkterna: (, ) (1/4, 1/16) ( 1/4, 1/16) A f xx 3/4 3/4 B f xy C f yy AC B 2 1 < 2 > 2 > sadelpunkt A >, lok.min A >, lok.min Svar: Punkterna (1/4,-1/16) och (-1/4,1/16) är båda lokala minimipunkter. Anm: De stationära punkterna karaktär kan också bestämmas ( ) genom att A B man i varje punkt beräknar egenvärdena till hessianen. B C

3 5. f(x, y, ) xe 2y. f:s riktningsderivata i punkten P : (1,, ) skall bestämmas i den riktning som svarar mot riktningsvektorn för linjen (x, y, ) (1 4t, 8t, t) (1,, ) + t( 4, 8, 1). Den avsedda riktningen är alltså v ( 4, 8, 1). Den sökta riktningsderivatan är f v(p ) gradf(p ) ˆv, där ˆv v/ v. gradf (f x, f y, f ) (e 2y, 2xe 2y, xe 2y ) e 2y (1, 2x, x). gradf(p ) gradf(1,, ) (1, 2, 1). ˆv ( 4, 8, 1)/ ( 4, 8, 1) ( 4, 8, 1)/ ( 4, 8, 1). 9 Alltså, f v(p ) (1, 2, 1) 1 9 ( 4, 8, 1) 1 9 ( ) 1 9 ( 21). Svar: f v(1,, ) a. Koordinattransformationen { ( ) x r cos ϕ xr x har Jacobimatrisen J(r, ϕ) ϕ y r sin ϕ y r y ϕ sin ϕ Man får detj(r, ϕ) cos ϕ r sin ϕ sin ϕ r cos ϕ r cos 2 ϕ + r sin 2 ϕ r. detj(r, ϕ) är alltså då r och därmed är transformationen inverterbar i en omgivning av alla punkter där r. Speciellt är detta sant för punkten r 2, ϕ π/3. ( cos ϕ r sin ϕ r cos ϕ ). 6b. De partiella derivatorna r x och r y kan bestämmas genom direkt derivering eftersom man vet att r x 2 + y 2. r x x2 + y x 2 P.s.s fås r y x2 + y y 2 y r ϕ π/3 får man alltså r x 1/2, r y 3/2. 2x 2 x 2 + y x 2 r r cos ϕ r cos ϕ. sin ϕ. I punkter med koordinaten V.g. vänd!

4 7. Matrisen A skall transformera (2, 3, ) till (3, 4, 7). På komponentform: a 11 a 12 a a 11 3a 12 3 a 21 a 22 a dvs. 2a 21 3a a 31 a 32 a a 31 3a 32 7 Problemet är underbestämt och det finns oändligt många tänkbara lösningar. Bl.a. ser man att a 13, a 23 och a 33 kan väljas helt godtyckligt. En lösning med heltalskomponenter är exempelvis a 11, a 12 1, a 21 2, a 22, a 31 2, a 32 1, a 13 a 23 a 33. Svar: (exempelvis ) Ekvationen x 2 + 4y xy + 2x + 4y 3 skall skrivas på huvudaxelform dvs. diagonaliseras. Huvudaxlarnas riktningar skall anges. Detta innebär att egenvärden och motsvarande egenvektorer skall bestämmas till den matris som svarar mot vänsterledets kvadratiska form. Ekvationen kan skrivas x T Q x 3 där x (x, y, ) T och Q Q:s egenvärden: 1 λ λ λ (1 λ)((4 λ) 2 4) ( 1)( (4 λ) 2)+( 2 (4 λ)) (1 λ)/λ 2 8λ+12)+λ 6 6+λ λ 2 8λ+12 λ 3 +8λ 2 12λ+2λ 12 λ 3 + 9λ 2 18λ ( λ)(λ 3)(λ 6). Egenvärdena är alltså λ 1, λ 2 3 och λ 3 6. Den diagonaliserade ekvationen med de nya variablerna u, v och w blir alltså

5 3v 2 + 6w 2 3 eller: v 2 + 2w 2 1 Notera att u saknas eftersom egenvärdet λ 1. Detta medför att ytans skärningskurva med varje plan av typen u C är en ellips med halvaxeln 1 i v-led och 1 2 i w-led. Ytan är alltså en elliptisk cylinder. Huvudaxelriktningar: Dessa riktningar erhålles som egenvektorer till de tre egenvärdena, dvs som lösningar till följande tre homogena system, svarande mot egenvärdena λ, 3 resp. 6. (Endast två av tre ekvationer anges) ( ) y ( ) ( ) y ( ) ( ) y Gausselimination på dessa system ger efter ett par operationer: ( ) ( ) ( ) ( ) ( ) y ( ) y y varur man får de tre egenvektorerna huvudaxelriktningarna i xy-rummet: v 1 t( 2, 1, 1), v 2 t(1, 1, 1), v 3 t(, 1, 1). ( ) V.g. vänd!

6 9. Anpassning av de tre punkterna (1, 1), (2, ) och (4, 1) till en kurva av typ ax + b ln x y ger följande överbestämda system: a 1 1 ( ) 1 2a + (ln 2)b eller 2 ln 2 a b 4a + (2 ln 2)b ln 2 1 Normalekvationerna blir då: ( ) ln 2 ln 2 2 ln ln 2 ( ) a b ( ) ln 2 2 ln 2 1 ( ) ( ) 21 1 ln 2 a 1 ln 2 5 ln 2 2 b ( ) 3 2 ln 2 Detta system kan lösas exempelvis med Cramers regel och man får: 3 1 ln 2 2 ln 2 5 ln 2 2 a 5 ln ln 2 5 ln ln 2 5 ln 2 2 b ln 2 2 ln ln 2 1 ln 2 5 ln 2 2 Svar: Den sökta kurvan är y x ln 2 ln x 12 ln 2 5 ln ln 2.

7 1. Antag att tältgavelns bas är 2x l.e och dess höjd h l.e. Antag dessutom att tältets längd är l.e.. Tältgavelns sidor blir då x 2 + h 2 l.e. Totala tältarean blir då (tältbotten saknades) A 2xh + 2 x 2 + h 2. Denna area skall minimeras under bivillkoret att tältvolymen xh V. Ställ upp Lagrangefunktionen: Villkoret grad Φ ger: Φ 2xh + 2 x 2 + h 2 + λ(xh V ) 2x (1) Φ x + 2h + λh x2 + h2 2h (2) Φ h + 2x + λx x2 + h2 (3) Φ 2 x 2 + h 2 + λxh Bivillkor: (4) xh V Vid lösningen av ekvationssystemet antas att x, h, >. Eliminera λ mellan (1) och (2) genom 2x 2 x (1) h (2) : x2 + h 2h2 2 x2 + h, 2 x2 h 2, x h. Insättning av h x i (3) ger: 2 2x + λx 2, dvs. λ 2 2 x. Insättning av detta uttryck för λ samt h x i (1) ger: 2x +2x 2 2x, ( 2 2 2)+2x, 2x 2, x 2. 2x x Förhållandet mellan x, h och är alltså 1 : 1 : 2. Sätt x h, h 2 i bivillkoret xh V : h 3 2 V ger tältets höjd h V 1/3 2 1/6. V.g. vänd!

8 Anm. 1: Den erhållna stationärpunkten svarar mot ett globalt minimum för problemet på området x, h, > Detta brukar i liknande fall ofta motiveras med problemets karaktär. Dock är det beskrivna området inte slutet begränsat och ett strikt bevis borde innehålla en motivering för att ett globalt minimum verkligen antas i den funna stationära punkten. En sådan motivering skisseras här: Uttryck först tältarean A som funktion av x och h genom att sätta V/xh: A 2xh + 2V x 2 + h 2 xh 2xh + 2V xh x 2 + h 2 xh Här kan man visa att x 2 + h 2 2 xh varför man får att (låt M vara ett stort tal): A M då xh 8V 2 M 2. Närmare undersökning av funktionen A(x, h) visar också att A M då x 2 + h 2 M 2 Därför kan man dra slutsatsen att den erhållna stationära punkten utgör en global minimipunkt på det slutna, begränsade området definierat av xh 8V 2 M och x 2 + h 2 M 2 eftersom A:s värden på områdets rand är M. 2 16V A:s värden utanför detta område i första kvadranten av xh-planet är också M, varför slutsatsen gäller hela första kvadranten (x >, h > ). 16V Anm. 2: Med de erhållna värdena på x, h och får man ett tält där gavlarna utgör halva kvadrater medan de två taksidorna utgör kvadrater. Tältet utgör därmed en halv kub.

Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001

Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001 Institutionen för matematik KTH Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001 Skrivtid: xx - yy Inga hjälpmedel tillåtna För godkänt betyg 3 fordras minst 16 poäng, för betyg

Läs mer

Lösningar till tentamen i Matematik II, 5B1116, 5B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004.

Lösningar till tentamen i Matematik II, 5B1116, 5B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004. Institutionen för matematik. KTH Lösningar till tentamen i Matematik II, B1116, B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004. 1. Välj en punkt i planet 3x + 3y z = 4, exempelvis

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

= ( 1) xy 1. x 2y. y e

= ( 1) xy 1. x 2y. y e Lösningsförslag, Matematik, B, E, I, IT, M, Media och T, -8- Den sista raden är nästan lika med den första raden med omvänt tecken Om vi därför adderar den första raden till den sista raden får vi en rad

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

7 Extremvärden med bivillkor, obegränsade områden

7 Extremvärden med bivillkor, obegränsade områden Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

2x ex dx. 0 = ln3 e

2x ex dx. 0 = ln3 e Institutionen för Matematik Lösningsförslag till tentamen i SF627, Matematik för ekonomer, del 2, 6 hp. 26..7. Räkna inte denna uppgift om du är godkänd på lappskrivning 3 Visa att funktionen f (x) = x

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open. Institutionen för matematik KTH Tentamensskrivning, 25 6 3, kl 8 3 5B9, Vektoranalys, för Open Uppgifterna 4 5 svarar mot varsitt moment i den kontinuerliga examinationen Av dessa uppgifter skall man bara

Läs mer

Flervariabelanalys E2, Vecka 3 Ht08

Flervariabelanalys E2, Vecka 3 Ht08 Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel

Läs mer

Lösningsforslag till tentamen i SF1624 den 22/ e x e y e z = 5e x 10e z = 5(1, 0, 2). 1 1 a a + 2 2a 4

Lösningsforslag till tentamen i SF1624 den 22/ e x e y e z = 5e x 10e z = 5(1, 0, 2). 1 1 a a + 2 2a 4 Institutionen för matematik, KTH Serguei Shimorin Lösningsforslag till tentamen i SF64 den /0 007 Eftersom planet går genom punkten (,, 0, det har ekvation a(x + b(y + + cz = 0, där a, b, c är koefficienter

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

Kap Globala extremvärden, extremproblem med bivillkor.

Kap Globala extremvärden, extremproblem med bivillkor. Kap 13.2 13.3. Globala extremvärden, extremproblem med bivillkor. A 1001. Sök det största och minsta värdet av funktionen f(x,y) = x 2 + 2y 2 x på cirkeln x 2 + y 2 = 1. A 1002. Vilka värden kan funktionen

Läs mer

5 Lokala och globala extremvärden

5 Lokala och globala extremvärden Nr 5, mars -5, Amelia 5 Lokala och globala extremvärden Ienvariabelinträffar lokala extremvärden i punkter där f (x) =, om f är deriverbar och det inte är en randpunkt. Vilken typ av extremvärde det är

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

2x + 3y + z = 2 x + 2y + z = a x 2y 3z = 1

2x + 3y + z = 2 x + 2y + z = a x 2y 3z = 1 Institutionen för matematik KTH Tentamensskrivning, 8, kl 8 5B6 Matematik, för E, I, M, Media och T För betyg godkänt, 4 och 5 krävs minst 6, respektive poäng inklusive bonuspoäng Samtliga behandlade uppgifter

Läs mer

Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3

Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3 Lektion 7, Flervariabelanalys den februari 000 9 Bestäm Taylorserien till funktionen log( + x + y + xy) i punkten (0, 0) Vi kan faktorisera argumentet till logaritmen och förenkla funktionen log( + x +

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

Figur 1: Postföretagets rektangulära låda, definitioner.

Figur 1: Postföretagets rektangulära låda, definitioner. ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz. Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

ANDRAGRADSKURVOR Vi betraktar ekvationen

ANDRAGRADSKURVOR Vi betraktar ekvationen ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4

1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4 KARLSTADS UNIVERSITET Avdelningen för matematik Tentamen i Linjär Algebra, 7,5p för MAGA4 Mån -6-7, 8.5-3.5 på Kau Ansvarig lärare: Ilie Barza, tel.54-7 5 95 Hjälpmedel: Skrivdon. Maximalt antal poäng:

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A

Läs mer

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0). N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

Provräkning 3, Linjär Algebra, vt 2016.

Provräkning 3, Linjär Algebra, vt 2016. LINK OPINGS UNIVERSITET Matematiska Institutionen Provräkning, Linjär Algebra, vt 6. Lämna in lösningar för rättning senast 8. onsdagen den 7 april 6. Lämnas in antigen i mitt fack på MaI eller direkt

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.

Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden. Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer