Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Storlek: px
Starta visningen från sidan:

Download "Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att"

Transkript

1 Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet mellan punkterna P(4,a,10) och Q(2,1,1) blir 11 längdenheter. Problem 2. Man vet att en rot till ekvationen x 3 x 2 10x 8 = 0 är x 1 = 2. Bestäm de två andra. Problem 3. Bestäm a så att vinkeln mellan v = (a,a,4) och u = (2,,) blir 30 Problem 4. Bestäm avståndet mellan planen x+4y+8z+3 = 0 och 2x 8y 16z+66 = 0. Problem. Bestäm a så att planen ax 6y+9z+7 = 0 och 2x+4y 2az 8 = 0 blir parallella. Problem 6. Bestäm arean av den triangel som har sina hörn i punkterna P(1,2,3), Q(0,2,1) och R( 1, 2, 0). Problem 7. Bestäm x så att triangeln med hörn i punkterna P(0,4, 3), Q( 1,3,4) och R(x,1,1) blir rätvinklig med den räta vinkeln vid R Problem 8. Sök x så att b ( a b) = b a där a = (3x, 2x, 1) och b = ( 1, x,2) Problem 9. Bestäm x = (x 1,x 2,x 3 ) så att u = v u = 2 a b+ c v = 3 b+ x a Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att a u+b v = w Då u = (1,2,3), v = (2,0, 2), w = (x,1, 1). Bestäm samtidigt värdena på a och b. Problem 11. Bland dessa vektorer finns några som är vinkelräta mot varandra vilka? a = (1, 2,0) b = (0,0,3) c = (2, 1,2) d = (3,3, 1) e = ( 1, 1,0) f = (2,1,0) g = ( 1,2,3) h = (1,2,3) Problem 12. Bestäm x, så att vektorn u = (1, x, 2) blir vinkelrät mot v = (x, x, 1). Problem 13. Bestäm k så att k v = 1 då v = (3, 2,6) Håkan Strömberg 1 KTH Syd

2 Problem 14. Bestäm vektorn u = (x, y, 0) sådan att den är vinkelrät mot v = (1, 2, 2) och dessutom u = v. Problem 1. Visa att påståendet: Punkterna P 1 = (3,0,2), P 2 = (4,3,0), P 3 (8,1, 1) är hörn i en rätvinklig triangel är sant. Vid vilken punkt ligger den räta vinkeln? Problem 16. Bestäm u ( u v) för godtyckliga vektorer i rummet. Problem 17. Bestäm k, så att u+k v blir vinkelrät mot w. Då u = (1,3, 1), v = (0,2,4) och w = (2,1, 1). Problem 18. Bestäm a, så att punkterna P 1 = (1,2,6), P 2 = (2,a,3), P 3 = (2,2,4) och P 4 = (a,a,) ligger i samma plan. Problem 19. Kan konstanterna a, b, c och d bestämmas så att parameterframställningarna x = 1+2t x = 4+as y = 2 3t y = b+cs z = t z = d+s ger samma linje? Problem 20. Två plan som inte är parallella eller sammanfaller skär varandra utefter en linje. Ofta ges linjens ekvation som normalekvationen för två plan där alltså skärningen mellan planen är den avsedda linjen. Vilken linje utgör skärningen av dessa plan? { x+y+z+1 = 0 2x+3y+4z+ = 0 Problem 21. Tre punkter p 1 = (1,0, 1), p 2 = (3, 2,1) och p 3 = ( 1,2,0) ligger i samma plan och två punkter p 4 = (2,4,3) och p = (0,0,2) ligger på samma linje. Bestäm linjens skärningspunkt med planet. Problem 22. Vektorn n = ( 1,2,4) är normalvektor till ett plan i vilken punkten P = ( 1,2,4) befinner sig. Bestäm planets ekvation på normalform. Problem 23. Visa att linjen ligger i planet 6x+4y 4z = 0 x = 0 y = t z = t Problem 24. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z = 0 Problem 2. Sök ekvationen till det plan, som går genom punkten p 1 = (1,2,3) och som är parallellt med xy-planet. Problem 26. Vi söker här ekvationen för det plan som går genom origo och som är parallellt med 7x+4y 2z+3 = 0. Håkan Strömberg 2 KTH Syd

3 Problem 27. Det två planen 2x + y 4z = 0 och x + 2y + 1 = 0 är vinkelräta mot varandra: Sök nu ett tredje plan som är vinkelrätt mot båda dessa och som dessutom går genom punkten p = (, 2, 3) Problem 28. Sök ekvationen till ett plan som innehåller linjen l 1 och som är parallell med linjen l 2 x = 1+2t x = 1+4t l 1 = y = 2+3t l 2 = y = 3 2t z = +6t z = Problem 29. Sök ekvationen till en linje som går genom punkten p = (1,1,1) och som är parallell med planen 2x+y z = 0 och x 2y+3z 4 = 0. Problem 30. På linjen l 1 ligger punkten P 1 (, 2, 1). Bestäm en annan punkt som ligger 10 längdenheter från P 1 men fortfarande på linjen. x = 1+t l 1 = y = 2 t z = 1 Problem 31. Bestäm avståndet mellan punkten P(1,0, 2) och linjen l 1 x = 1 t l 1 = y = t z = 0 Problem 32. Bestäm avståndet mellan de två linjerna l 1 och l 2 x = 1 t x = 2 l 1 = y = 3 l 2 = y = 1+t z = 3+t z = 2t Problem 33. Bestäm vinkeln mellan linjerna l 1 och l 2 x = 3+t x = 4+2t l 1 = y = 2+t l 2 = y = 1+t z = 6+t z = t Problem 34. Bestäm vinkeln mellan de två planen pl 1 och pl 2 x = 1+s+2t x = 2+s+2t pl 1 = y = 2 t pl 2 = y = t z = 3+s z = 1+2t Problem 3. Bestäm avståndet mellan punkten P(3, 0, 1) och planet x + 2y + 2z + 4 = 0 Håkan Strömberg 3 KTH Syd

4 Svar 1. (4 2) 2 +(a 1) 2 +(10 1) 2 = 11 (4 2) 2 +(a 1) 2 +(10 1) 2 = a 2 2a+1+81 = 121 a 2 2a 3 = 0 a 1 = a 2 = 7 Svar: a 1 = eller a 2 = 7 Svar 2. x 2 10x 8 : x+2 = x 2 3x 4 x 3 +2x 2 x 3 3x 2 10x 3x 2 6x 4x 8 4x 8 0 Återstår så att lösa x 2 3x 4 = 0 som har rötterna. Svar: x 2 = 1 och x 3 = 4 Svar 3. Först måste man känna till att cos30 = 3 2. Sedan kan man ställa upp följande ekvation 3 (a,a,4) (2,,) = 2 a 2 +a a = 2(2a+a+20) 162(2a 2 +16) = 4(7a+20) 2 162(2a 2 +16) = 4(7a+20) 2 32(31 3a+4a 2 ) = 0 a 1 = 1 a 2 = 31 4 Svar 4. Först måste de två normalvektorerna n 1 = (1,4,8) och n 2 = ( 2, 8, 16) vara parallella för att planen ska vara parallella. Är planen inte parallella skär de varandra och avståndet dem emellan är 0. Vi ser omedelbart att ( 2, 8, 16) = 2(1,4,8) Det finns ett tal (skalär) multiplicerat med den ena vektorn som gör den lika med den andra. Alltså är planen parallella. Alla punkter i det ena planet ligger lika långt från det andra planet. Vi väljer ut en punkt i det ena planet och konstruerar en linje som går genom denna punkt och med samma riktningsvektor som planens normalvektor. Vi väljer punkten P(1,2,z) och löser ekvationen z+66 = 0 Håkan Strömberg 4 KTH Syd

5 ger z = 3. Den eftersökta linjen har ekvationen x = 1+t y = 2+4t z = 3+8t Denna linje skär det andra planet då (1+t)+4(2+4t)+8(3+8t)+3 = 0 ger t = 4 9 som insatt i linjens ekvation ger punkten x = = 9 y = = 2 9 z = = 9 Nu beräknar vi avståndet mellan de två punkterna ( d = 1 ) 2 +( ( ) 2 = 4 9) Svar. för att planen ska vara parallella måste normalvektorerna vara parallella, det vill säga det finns ett tal λ så att λ(a, 6,9) = ( 2,4, 2a) Vi får följande överbestämda ekvationssystem a λ = 2 6 λ = 4 9 λ = 2a Ur den andra ekvationen får vi λ = 2 3, som med hjälp av den första ekvationen leder till a = 3. Med dessa värden ser vi att de två normalvektorerna blir identiska och vi kan sluta oss till att planen är parallella då a = 3. Svar 6. Vi bildar två vektorer från de tre punkterna v = (1,2,3) (0,2,1) = (1,0,2) och u = (1,2,3) ( 1,2,0) = (2,0,3) Arean får vi ni genom A = v u 2 e x e y e z w = v u = = 4 e y 3 e y = (0,1,0) A = w 2 = = 1 2 Håkan Strömberg KTH Syd

6 Svar 7. Ekvationen blir v = PR = (0,4, 3) (x,1,1) = ( x,3, 4) u = QR = ( 1,3,4) (x,1,1) = ( 1 x,2,3) ( x,3, 4) ( 1 x,2,3) = 0 x+x = 0 x 1 = 3 x 2 = 2 Två vektorer ( 3, 1, 1) och (2, 1, 1) uppfyller villkoren. Svar 8. Först bestämmer vi (3x, 2x, 1) ( 1, x, 2) c = a e x e y e z b = 3x 2x 1 1 x 2 = 4x e x+ e y 3x 2 e z x e x 6x e y +2x e z = ( x,1 6x, 3x 2 2x) b c = ( 1, x,2) ( x,1 6x, 3x 2 2x) = x x+6x 2 6x 2 4x = 0 b a = ( 1, x,2) (3x, 2x, 1) = 3x+2x 2 2 Till sist ekvationen Svar 9. 3x+2x 2 2 = 0 x 1 = 1 2 x 2 = 2 u = 2(1, 2,0) (1, 1,2)+(0,3, 1) = (1,0, 3) v = 3(1, 1,2) +(x 1,x 2,x 3 ) (1, 2,0) = (2+x 1, 1+x 2,6+x 3 ) Ur detta får vi 2+x 1 = 1 ger x 1 = 1, 1+x 2 = 0 ger x 2 = 1 och 6+x 3 = 3 ger x 3 = 9. x = ( 1,1, 9) Svar 10. ger ekvationssystemet a(1,2,3) +b(2,0, 2) = (x,1, 1) a+2b = x 2a = 1 3a 2b = 1 Ur den andra ekvationen får vi a = 1 2. Insatt i den tredje 3 2 2b = 1 ger b = 4. Till sist insatt i första ekvationen = x ger x = 3 Svar 11. Vi har att göra inte mindre än 28 beräkningar. De flesta förhoppningsvis i huvudet. Varje gång vi hittar v u = 0 har vi hittat ett par vinkelräta. Svar: ( a, b), ( a, f),( b, e), ( b, f), ( d, g) och ( f, g) Svar 12. (1,x,2) (x,x, 1) = 0 x+x 2 2 = 0 x 1 = 2 x 2 = 1 Håkan Strömberg 6 KTH Syd

7 Svar 13. 9k 2 +4k 2 +36k 2 = 1 49k 2 = 1 7k = ±1 k = ± 1 7 Vektorn u = k v är normerad, har längden 1. ( 3 u = ^v = 7, 2 7, 6 ) 7 Svar 14. { (x,y,0) (1,2,2) = = x 2 +y { x+2y = 0 3 = x 2 +y Vi substituerar x = 2y i den andra ekvationen och får 3 = ( 2y) 2 +y = 4y 2 +y 2 y = ± 3 Det finns två lösningar (y = 3,x = 6 ) och (y = 3,x = 6 ) Svar 1. Vi kan bilda tre vektorer P 1 P 2 = (1,3, 2), P 1 P 3 = (,1, 3) och P 2 P 3 = (4, 2, 1). och bestämma deras längder Med hjälp av Pythagoras sats P 1 P 2 = ( 2) 2 = 14 P 1 P 3 = ( 3) 2 = 3 P 2 P 3 = 4 2 +( 2) 2 +( 1) 2 = 21 ( 14) 2 +( 21) 2 = ( 3) 2 ser vi att det hela stämmer. Den räta vinkeln ligger vid punkten P 2 Svar 16. u = (u 1,u 2,u 3 ) och v = (v 1,v 2,v 3 ). Vi börjar med att uttrycka u v e x e y e z w = u v = u 1 u 2 u 3 v 1 v 2 v 3 = u 2 v 3 e x +u 3 v 1 e y +u 1 v 2 e z u 3 v 2 e x u 1 v 3 e y u 2 v 1 e z som ger Utvecklat w = (u 2 v 3 u 3 v 2,u 3 v 1 u 1 v 3,u 1 v 2 u 2 v 2 ) u w = (u 1,u 2,u 3 ) (u 2 v 3 u 3 v 2,u 3 v 1 u 1 v 3,u 1 v 2 u 2 v 2 ) u w = u 1 (u 2 v 3 u 3 v 2 )+u 2 (u 3 v 1 u 1 v 3 )+u 3 (u 1 v 2 u 2 v 1 ) u w = 0 Håkan Strömberg 7 KTH Syd

8 Svar 17. Ekvationen Svar: k = 3 Svar 18. Vi bildar två vektorer ((1,3, 1) +k(0,2,4)) (2,1, 1) = 0 (1,2k+3,4k 1) (2,1, 1) = 0 2+2k+3 4k+1 = 0 2k = 6 k = 3 a = P 2 P 1 = (1 2,2 a,6 3) = ( 1,2 a,3) b = P2 P 3 = (2 2,2 a,4 3) = (0,2 a,1) Planets normalvektor n = a e x e y e z b = 1 2 a a 1 = (2 a) e x+(a 2) e z (6 3a) e x + e y = (2a 4,1,a 2) Vi skriver nu planets ekvation på normalform (2a 4)x+y+(a 2)z+d = 0 Med en av de tre använda punkterna insatt i ekvationen kan vi bestämma d. Till exempel genom P 3 (2a 4)2+2+(a 2)4+d = 0 4a 8+2+4a 8+d = 0 d = 14 8a Vi vet att punkten P 4 = (a,a,) ligger i planet vilket ger insatt (2a 4)a+a+(a 2)+14 8a = 0 a 2 3a+2 = 0 a 1 = 1 a 2 = 2 Det finns alltså två alternativa uppsättningar punkter som ger önskat resultat. Svar 19. Först vill vi att riktningsvektorerna ska vara parallella r 1 = (2, 3,1) och r 2 = (a,c,). Med c = 1 och a = 10 får vi r 2 = r 2 = (10,1,). Om vi väljer t = 3 2 och s = 0 i de två linjerna får vi punkten (4, 2, 3 2 ), då d = 3 2 och b = Väljer vi s = 1 och t = 2 får vi för båda linjerna punkten (14, 3 2, 13 2 ). Därmed har vi visat att för framräknade värden på a = 10,b = 2,c = 1,d = 3 2 är linjerna identiska. Svar 20. Välj z = t och lös ekvationssystemet nedan med avseende på x och y. { x+y+t+1 = 0 2x+3y+4t+ = 0 Vi får { x = 2+t y = 3 2t) Håkan Strömberg 8 KTH Syd

9 och påstår att linjen x = 2+t y = (3+2t) z = t är skärningslinjen mellan de två planen. Alla punkter på denna linje ligger i båda planen. Svar 21. Först planets ekvation på vektorform (x,y,z) = (1,0, 1) +((3, 2,1) (1,0, 1))t +(( 1,2,0) (1,0, 1))s (x,y,z) = (1,0, 1) +(2, 2,2)t+( 2,2,1)s (x,y,z) = (1+2t 2s,0 2t+2s, 1+2t+s) Översatt till parameterform Linjens ekvation på vektorform x = 1+2t 2s y = 0 2t+2s z = 1+2t+s (x,y,z) = (2,4,3)+((2,4,3) (0,0,2))w = (2,4,3)+(2,4,1)w = (2+2w,4+4w,3+w) Översatt till parameterform x = 2+2w y = 4+4w z = 3+w Vi har nu sex ekvationer och sex obekanta x = 1+2t 2s y = 0 2t+2s z = 1+2t+s x = 2+2w y = 4+4w z = 3+w Lösning av ekvationssystemet ger oss skärningspunkten ( 1 3, 2 3, 13 ) 6 Svar 22. Första steget (x,y,z) ( 1,2,4)+d = 0 ger x+2y+4z+d = 0. När vi så sätter in punkten P i ekvationen kan vi lösa ut d och vi har ekvationen. ger planets ekvation x+2y+4z 21 = 0 ( 1) d = 0 21+d = 0 d = 21 Svar 23. Om man väljer t = 1 får man punkten (0,1,1) eftersom = 0 så ligger den punkten i planet. Om man väljer t = 0 får man (0,0,0) som man omedelbart ser att den ligger i planet = 0. Om två punkter på en linje samtidigt ligger på planet ligger hela linjen i planet! Håkan Strömberg 9 KTH Syd

10 Svar 24. Linjen har riktningsvektorn r = ( 4, 2, 2) och planet har normalvektorn n = (2,1, 1) eftersom 2(2,1, 1) = ( 4, 2,2) är r parallell med n och därför går linjen vinkelrätt mot planet. Svar 2. xy-planet skrivet på vektorform (x,y,z) = (s,t,0). n = (0,0,1) är en normalvektor tillxy-planet. Vi får (x,y,z) (0,0,1)+d = 0 som ger z+d = 0. Eftersom n 1,2,3+d = 0 får vi d = 3 och planets ekvation z 3 = 0 Svar 26. Ett plan som är parallellt med 7x+4y 2z+3= 0 har normalvektorn n = (7,4, 2) (x,y,z) (7,4, 2) +d = 0 ger 7x+4y 2z+d = 0 eftersom punkten (0,0,0) ligger på planet får vi d = 0, vilket ger d = 0 och planets ekvation 7x+4y 2z = 0 Svar 27. Det första planet har n 1 = (2,1, 4) och det andra n 2 = ( 1,2,0). Nu ska vi hitta n 3 som är vinkelrät mot både n 1 och n 2. Det får vi genom att bestämma n 1 n 2 n 3 = n 1 n 2 = e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,) Genom (x,y,z) (8,4,) + d = 0 får vi 8x + 4y + z + d = 0 eftersom punkten (,2,3) ligger i planet får vi d = 0 som ger d = 63 och hela ekvationen är bestämd 8x+4y+z 63 = 0 Svar 28. Vektorerna v = (2, 3, 6) och u = (4, 2, 0) är linjernas riktningsvektorer och samtidigt parallella med planet. Genom v u får vi planets normalvektor. n = v u = e x e y e z = 24 e y 4 e z +12 e x 12 e z = (12,24, 16) Genom (x,y,z) (12,24, 16) + d = 0 får vi 12x + 24y 16z + d = 0. Punkten (1,2,) ligger på planet vilket ger d = 0, d = 20. Planets ekvation 12x+24y 16z+20 = 0 eller 3x+6y 4z+ = 0 Svar 29. Först räknar vi fram planens skärningslinje. Vi sätter z = t och löser ut x och y ur { 2x+y t = 0 Vi får x 2y+3t 4 = 0 x = 4 t y = 8 + 7t z = t Linjens riktningsvektor r = ( 1, 7, 1). Genom att multiplicera den först erhållna med får vi ett trevligare utseende och vi kan skriva den sökta linjens ekvation x = 1 t y = 1+7t z = 1+t Håkan Strömberg 10 KTH Syd

11 Svar 30. Ekvationen vi har att lösa ( (1+t)) 2 +( 2 (2 t)) 2 +( 1 ( 1)) 2 = 10 (4+t) 2 +(t 4) 2 = 10 (4+t) 2 +(t 4) 2 = 100 t 1 = 4 2 t 2 = 4+ 2 Dessa t insatta i linjens ekvation ger oss de två sökta punkterna P 2 ( 2, 2+ 2, 1) och P 3 (+ 2, 2 2, 1) Svar 31. Linjen har riktningsvektorn r = ( 1,1,0). Linjen på vektorform l 1 = (1 t,t,0). v = ( t, t, 2) är alla vektorer mellan punkten P och linjen. Vi söker nu den vektor av alla v som är vinkelrät mot r. Vi får ( t,t,2) ( 1,1,0) = 0 t+t+0 = 0 t = 0 Det betyder att det är mellan punkten P 2 (1,0,0) och P(1,0, 2) som avståndet ska beräknas. Genom huvudräkning får vi d = 2. Svar 32. Den första linjen har riktningsvektorn r 1 = ( 1,0,1) och för den andra r 2 = (0,1,2). De två linjerna på vektorform l1 = (1 t,3,3 + t) och l2 = (2,s 1,2s). v = ( t 1,4 s,3 2s t) är vektorer som har startar från en punkt på l1 och slutar vid en punkt på l2. Vi är nu på jakt efter den vektor av alla v vars riktning är vinkelrät mot både r 1 och r 2. Vi får följande ekvationssystem övergår i { ( t 1,4 s,3 2s t) ( 1,0,1) = 0 ( t 1,4 s,3 2s t) (0,1,2) = 0 { 4 2s+t = 0 10 s+2t = 0 Med lösningen s = 2 och t = 0. De två punkterna vi söker är på första linjen P 1 = (1,3,3) och på andra linjen P 2 = (2, 1,4). Avståndet mellan dessa punkter är lika med avståndet mellan linjerna: d = (2 1) 2 +(1 3) 2 +(4 3) 2 = 6 Svar 33. Vinkeln mellan linjerna är lika med vinkeln mellan riktningsvektorerna. De två linjerna har riktningsvektorerna r 1 = (1,1,1) respektive r 2 = (2,1,1) Vi får cosθ = (1,1,1) (2,1,1) 3 6 = 4 18 θ = arccos 4 = arccos Svar 34. Vi har två vägar att gå. Antingen bestämmer vi de två planens ekvationer på normalform, från vilka vi enkelt kan bestämma normalvektorerna. Varefter vi bestämmer vinkeln mellan dessa vektorer. Ett annat sätt är att bestämma normalvektorn genom de två riktningsvektorerna i varje plan och därefter vinkeln mellan dessa vektorer. Håkan Strömberg 11 KTH Syd

12 Vi väljer den senare planen, som antagligen innebär mindre räknande. För det första planet gäller riktningsvektorerna v = (1,0,1) och u = (2, 1,0). n 1 = v u = e x e y e z = 2 e y e z + e x = (1,2, 1) Samma sak för det andra planet ger v = (1,0,0) och u = (2,1,2) e x e y e z n 2 = v u = = e z 2 e y = (0, 2,1) Vinkeln mellan n 1 och n 2 bestäms av Svar: θ = π arccos cosθ = n 1 n 2 n 1 n 2 = 6 = 30 Svar 3. Vi ska lösa problemet på inte mindre än tre olika sätt (!). Lösning I: Då planets normalvektor n = (1,2,2) tillsammans med punkten P ger oss följande linje som går genom P och vinkelrätt mot planet x = 3+t l = y = 0+2t z = 1+2t Vi kan nu bestämma skärningspunkten mellan planet och linjen genom (3+t)+2 2t+2(1+2t)+4 = 0 3+t+2t+2+4t+4 = 0 9t+9 = 0 t = 1 ger skärningspunkten P 2 (2, 2, 1). Avståndet PP 2 till sist d = (3 2) 2 +(0 ( 2)) 2 +(1 ( 1)) 2 = 3 Lösning II: Vi startar med att bestämma planets ekvation på parameterform och börjar med att sätta y = s och z = t. Vi får så en ekvation där vi löser ut x. x+2s+2t+4 = 0 x = 4 2s 2t Planets ekvation kan nu skrivas x = 4 2s 2t y = s z = t med de två riktningsvektorerna r 1 = ( 2,1,0) och r 2 = ( 2,0,1). Vi kan nu framställa alla vektorer som har sin start i planet och slut i punkten P. v = (3,0,1) ( 4 2s 2t,s,t) = Håkan Strömberg 12 KTH Syd

13 (7+2s+2t, s,1 t). Vi söker nu den vektor av dessa som är vinkelrät med både r 1 och r 2. Vi får ekvationssystemet: { (7+2s+2t, s,1 t) ( 2,1,0) = 0 (7+2s+2t, s,1 t) ( 2,0,1) = 0 ger s = 2 och t = 1 som ger den vektor vi söker v = (1,2,2) och dess längd d = = 3 Lösning III: Så den lösning som ligger allra närmast till för en ingenjör med formelsamling: d = Ax 0 +Bx 0 +Cx 0 +D A 2 +B 2 +C 2 = = 3 Håkan Strömberg 13 KTH Syd

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 = Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn

Läs mer

2+t = 4+s t = 2+s 2 t = s

2+t = 4+s t = 2+s 2 t = s Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)

Läs mer

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Moment 4.3.1, 4.3.2 Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Planet Ett plan i rummet är bestämt då två icke parallella

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0 Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2010 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 7 Uppgift 1................................. 7 Uppgift 2.................................

Läs mer

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t) Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

Komplexa tal med Mathematica

Komplexa tal med Mathematica Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor

Läs mer

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av: MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?

Läs mer

x+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5

x+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5 Uppgifter med linjära ekvationssystem Tips för att lösa linjära ekvationssystem Då systemet saknar parametrar ställer man direkt upp totalmatrisen. Detta är endast av administrativa skäl, blir mer lättöverskådligt.

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut. vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer

Vektorer för naturvetare. Kjell Elfström

Vektorer för naturvetare. Kjell Elfström Vektorer för naturvetare Kjell Elfström Copyright c Kjell Elfström 2015 Första upplagan, mars 2015 Innehållsförteckning 1 Vektorer 5 1.1 Vektorbegreppet......................... 5 1.2 Operationer på vektorer.....................

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Moment 4.2.1, 4.2.2, 4.2.3, 4.2.4 Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Många av de objekt man arbetar med i matematiken och

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

Att beräkna:: Avstånd

Att beräkna:: Avstånd Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Vektorgeometri. En inledning Hasse Carlsson

Vektorgeometri. En inledning Hasse Carlsson Vektorgeometri En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 01 Innehåll 1 Inledning Geometriska vektorer.1 Definition av vektorer........................

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA. Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn

Läs mer

Repetition inför tentamen

Repetition inför tentamen Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8

Läs mer

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA004 Tillämpad Matematik II, 7.hp, 08-0- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

Proof. Se uppgifterna. Definition 1.6. Två vektorer u och v är vinkelräta (ortogonala) om < u, v >= 0.

Proof. Se uppgifterna. Definition 1.6. Två vektorer u och v är vinkelräta (ortogonala) om < u, v >= 0. 1. Punkt och Linjer När du läser denna text är det bra om du ritar bilder för att exemplifiera innehållet. Det är lite komplicerad med i.tex, och därför avstår jag från att lägga vid illustrationer även

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA00 Tillämpad Matematik II, 7.5hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Linjer och plan Låt ABCD vara en fyrhörning i planet. Om A väljs till origo och

Linjer och plan Låt ABCD vara en fyrhörning i planet. Om A väljs till origo och Linjer oh plan Läs Sparr, avsn. 3. Många läroböker likställer koordinatsystem med rätvinkligt koordinatsystem, närmare bestämt: med ett ortonormerat system (ON-system). O:et står för ortogonal = rätvinklig,

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA004 Tillämpad Matematik II, 7.5hp, 09-06-07 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Onsdagen 17 november 2010 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A

Läs mer

Tillämpad Matematik II Övning 1

Tillämpad Matematik II Övning 1 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Veckoblad 4, Linjär algebra IT, VT2010

Veckoblad 4, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

Betygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd.

Betygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd. Tentamen i Matematik, HF93 7 dec 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng. Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, 3 respektive poäng. Komplettering:

Läs mer

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng

Läs mer

Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v.

Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. Kapitel 1 Vektorer Vektorbegreppet 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. 1.2 Rita ut vektorerna u=(3,1) och v=( 2,2) i samma koordinatsystem. Illustrera additionerna/subtraktionerna

Läs mer