Funktioner. Räta linjen

Storlek: px
Starta visningen från sidan:

Download "Funktioner. Räta linjen"

Transkript

1 Sidor i boken , Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är de involverade i ett samtal om räta linjen och dess ekvation (funktion). Tillsammans löser de ett antal problem som sammantaget utgör det man behöver ha med sig i ryggsäcken för vidare studier. KTH: Idag ska vi snacka om räta linjen och dess ekvation. Minns du något om det? TB: Ja, det är klart. Jag tror faktiskt att jag kommer att kunna svara rätt på nästan allt du kommer att fråga mig om. KTH: Vi får väl se. Först det här med ekvation. Man uttrycker ju ofta den funktion, som det egentligen handlar om, som y = k x+m istället för att skriva f(x) = k x+m. Jag borde förstås veta varför det blivit på det sättet. Vad står förresten k och m för? TB: Står för!? Vad menar du då? Stopp, stopp vänta ett tag, jag vet. k, även kallat k-värdet är linjens riktningskoefficient eller lutningen helt enkelt. m däremot... KTH: m är kanske mindre viktig, men det underlättar att känna till att linjen skär y-axeln i punkten (0, m). Så om jag säger att en linje har riktningskoefficienten 1 och skär y-axeln i punkten (0,3), vilken är då den linjens funktion? TB: k = 1 och m = 3 ger y = x+3 eller y = 3 x KTH: Bra. Så här ser grafen för den funktionen ut: Figur 1: I figur finns två linjer inritade. Här har du två funktioner, L 1 : y = x+1 och L : y = 4 x, vilken är vilken? TB: Linjen markerad med A skär y-axeln på i punkten (0,4) och L har m = 4, alltså hör de ihop. KTH: Det är riktigt. Ännu enklare är det kanske att titta på k-värdena A har negativ lutning L har k = 1. B har positiv lutning L 1 har k =. Vilken funktion har linjen i figur 3 Håkan Strömberg 1 KTH STH

2 Figur : Figur 3: TB: Ingen aning faktiskt. Jag ser att linjen är parallell med x-axeln. Jag gissar att den helt enkelt saknar funktion. KTH: Nu hade du fel. För varje värde x är y = 3, till exempel f(1000) = 3 och f( ) = 3. Funktionen är konstant och skrivs alltså y = 3. Om jag ger dig två punkter P1(1,1) och P(5,13), kan du då bestämma funktionen för den linje som går genom dessa punkter? TB: Mmm... Har man två punkter så finns det ju bara en rät linje som går genom dessa. Jag ska alltså bestämma k och m i y = k x + m. Det kanske inte är så lätt. (TB funderar) Om jag börjar med k-värdet k = y x = y 1 y = 13 1 x 1 x 5 1 = 3 Jag tror, eller vet, att k = 3. Jag har nu kommit så här långt: y = 3x + m och nu ska jag bestämma m men hur? (TB funderar igen) När x = 5 är y = 13 KTH: Javisst. TB: Jag sätter alltså in den andra punkten P i ekvationen y = 3x + m och får 13 = m. Löser jag den ekvationen får jag m =. Om jag har tänkt rätt kan funktionen nu skrivas y = 3x. Men om jag hade satt in P1 istället hade jag väl fått ett annat resultat? KTH: Gör det. TB: 1 = 3 1+m. Nej, jag får ändå m =. Nu är jag säker på mitt svar. KTH: Bra. Vi går vidare i texten. Nu ska jag ge dig två funktioner. { L1 : y = 3x 5 L : y = x+3 Var skär de varandra. Med andra ord bestäm skärningspunkten. Håkan Strömberg KTH STH

3 TB: När jag stoppar in ett och samma x-värde i de båda funktionerna ska jag få samma resultat. Då har jag hittat en punkt som ligger på båda linjerna. Denna punkt kallas skärningspunkten. Observera det kan bara finnas en skärningspunkt när det handlar om två räta linjer. KTH: Allt du sagt är korrekt, men hur hittar du skärningspunkten? TB: Jag kan ju alltid prova mig fram. Stoppa in olika värden på x och om jag har tur, så har jag. KTH: Självklart behöver man inte gissa. Tänk efter nu. TB: Blir det en ekvation? Någonting i stil med 3x 5 = x+3 3x x = 3+5 x = 8 Låt mig testa nu då x = 8 för linje L 1 blir y = 19 och x = 8 för linje L är också y = 19. Det funkar ju! KTH: Vilken är då skärningspunkten? TB: (8,19) KTH: Bra. Nästa problem: Nu ska vi kombinera de två problemen vi löst ovan. Givet P1(,4) och P(5, ), som ligger på samma linje samt P3( 1, 8) och P4(3, 1), som ligger på en annan. Vilken skärningspunkt har dessa linjer? TB: Så du menar att jag ska göra om nästan samma sak igen? Vad jobbig du är. KTH: När du gjort det tror jag att det också kommer att sitta för en lång tid framåt troligtvis över tentamen. TB: Jag börjar med punkterna P1 och P. De ligger på en linje L 1 : y = k 1 x+m 1. Först bestämmer jag k 1 -värdet: k 1 = y x = y y 1 = 4 x x 1 5 = 6 Jag sätter nu in P1 i L 1 och får 4 = 6 +m 1 som ger m 1 = 8. Funktionen för den första linjen är nu bestämd till L 1 : y = 6x 8. Nu är det dags för nästa linje, puh. Det handlar nu om punkterna P3( 1,8) och P4(3, 1). Funktionen är denna gång L : y = k x+m. k = y x = y 3 y 4 x 3 x 4 = 8 ( 1) ( 1) 3 = 5 Så över till m. Jag använder den andra punkten och sätter in den i L och får ( 1) = ( 5)3+m som ger m = 3. Jag är bra på huvudräkning eller hur? Alltså blir L : y = 5x+3. Vad var det jag skulle göra nu igen? KTH: Ta reda på skärningspunkten för de linjer vars funktion du just bestämt. TB: Javisst ja. Jag har alltså Dessa leder till den enkla ekvationen { L1 : y = 6x 8 L : y = 5x+3 6x 8 = 5x+3 6x+5x = x = 11 x = 1 Jag kan nu stoppa in x = 1 i vilken som helst av L 1 och L i båda fallen får jag y =. Skärningspunkten är alltså (1, ). KTH: Nu har du varit så duktig, så du får välja nästa problem själv. TB: Ska jag jag har inga olösta problem. Dom får du stå för. Håkan Strömberg 3 KTH STH

4 KTH: Då tar vi det här: Jag ger dig fyra punkter P1(,9), P(4,), P3(, 19) och P4(6,37). En av dem ligger inte på samma räta linje vilken? TB: Det är väl enkelt. Jag väljer ut två punkter till exempel P1 och P, bestämmer motsvarande funktion. Sedan sätter jag in de andra två punkterna och den som inte ligger på linjen är den punkt jag söker. KTH: Är du säker på att detta fungerar? TB: Varför skulle det inte göra det? Aha, du menar att om den udda punkten är antingen P1 eller P så får jag en linje som inte innehåller någon av de två andra punkterna. Jag förstår och inser samtidigt att det här kommer att bli riktigt jobbigt. Det finns ju många sätt att välja ut två punkter. KTH: Tänk vidare. TB: Om jag har otur i mitt första val, så vet jag att P3 och P4 ligger på samma linje och då får jag bestämma den funktionen, med vilken jag kan avgöra vilken av P1 och P som är oäkta. Därmed är denna uppgift inte jobbigare än förra uppgiften. KTH: Det är bara att sätta igång. TB: Jag kallar den första linjen L 1 : y = k 1 x+m 1 eftersom punkterna P1 och P är inblandade. Jag bestämmer först k 1 precis som tidigare Oj vad jobbigt, inte ens heltal. Så till m 1 k 1 = y x = y 1 y x 1 x = 9 4 = 13 ger m = 4 och funktionen 9 = 13 +m 1 L 1 : y = 13 x 4 Nu är det spännande. Vad händer förresten om en punkt fungerar? KTH: Det förstår du väl? TB: Ja,ja. Om en av punkterna P3 och P4 ligger på linjen så blir jag glad jag vet då att den andra inte gör det och därmed är den punkt jag är på jakt efter. Först testar jag med P 3 13 ( ) 4 = Nu vet jag att P3(, 19) inte ligger på den linje jag just bestämt funktionen för. Chansen finns nu att P4(6,37) gör det = Neeej inte heller den punkten fungerar, så då måste jag bestämma L 34. Först k-värdet Och sedan m-värdet k 34 = y x = y 4 y 3 = 37 ( 19) = 56 x 4 x 3 6 ( ) 8 = 7 37 = 6 7+m 34 m 34 = 5 som ger funktionen L 34 : y = 7x 5. Denna funktion ska nu avgöra vilken av punkterna P1 och P som är udda. Först test med P 1 (,9) 7 5 = 9 P1 ligger på linjen. Då kan inte P göra det. P är svaret! Jag ser på dig att du vill att jag ska testa det. Jag gör som du vill. För P får jag L 34 : = 3 För x = 4 insatt i L 34 får vi alltså 3 istället för. Ganska nära om man säger. Håkan Strömberg 4 KTH STH

5 KTH: Här ser du ett diagram med fem linjer inritade. Nedan finns också en tabell med fem funktioner. Det blir nu din uppgift att para ihop linjerna med funktionerna. Figur 4: I L 1 : y = x+3 II L : y = 3 x III L 3 : y = x 3 IV L 4 : y = 3x 1 V L 5 : y = 3x+8 TB: Ganska lätt eller hur? I och II skär y-axeln i samma punkt (0,3), vilket betyder att de har samma m-värde. B har positivt k värde och E negativt, så då vet vi att B I och E II. Sedan är det bra att plocka ut linjerna efter m-värdet: A V, C IV och D III KTH: En linje skär y-axeln i punkten (0,6) och den positiva x-axeln i en punkt så att linjen bildar en triangel med axlarna med arean 6 areaenheter. Bestäm linjens ekvation. TB: Triangeln som bildas är ju rätvinklig. Höjden är 6 och basen x. Triangelns area beräknas med: som ger ekvationen A = b h 6 = b 6 b = och därför skär vår linje x-axeln i (,0). m-värdet har vi ju redan och k-värdet kan vi bestämma med hjälp av k = y x = y y 1 = 6 0) x x 1 0 ) = 3 Den sökta funktionen blir då = 6 3x eller hur. KTH: Javisst, jättebra. Direkt över till nästa problem: En linje har k 1 = 1/. En annan går genom P1(5, ) och är samtidigt vinkelrät mot den första. Bestäm den andra linjens funktion. TB: Vad har jag missat? Jag menar, jag har ingen aning! KTH: Vad vet du om k-värdet för två linjer som skär varandra under rät vinkel? TB: Aha, jag har hört något om det. Få se nu... Kanske att om den ena linjen har k-värdet k 1 och den andra k så är k 1 k = 1. Är det det du tänker på? KTH: Ja, hur kan du använda detta här? TB: Linjen måste ju ha k-värdet k = eftersom k 1 k = 1 = 1. Eftersom vi har en punkt P(5, 7) given kan vi bestämma m ur 7 = 5+m, som ger m = 3 Håkan Strömberg 5 KTH STH

6 Figur 5: KTH: Bra. Här får du fem funktioner för räta linjer. Vilka är parallella? I 18x+7 = 9y II y+x 3 = 0 III 3 x+1 y 3 = 0 IV 13y+6x = 39 V y x = 3 TB: Ännu fler uppgifter. Jag börjar faktiskt bli trött. KTH: Men det ska kännas, precis som att träna inför Stockholm Marathon. TB: Så viktig kan ju inte detta vara. Men jag ska samla mig. Vad skulle jag göra nu igen? Linjer med samma k-värde. Man kan inte läsa av koefficienten framför x direkt utan måste först lösa ut y inte sant. Här har du lösningarna I y = x+3 II y = x+3 III y = x+3 IV y = x+3 V y = x+3 Det är inte nog med att de är parallella, I,III och V är identiska. På samma sätt II och IV. KTH: Bestäm funktionen för den linje som går genom origo och skärningspunkten för linjerna L 1 : y = 4x+13 och L : y = 7 x. TB: För en linje som går genom origo är m = 0. Vi ska alltså bestämma y = k x. För att får reda på k måste vi lösa ekvationen L 1 = L Håkan Strömberg 6 KTH STH

7 4x+13 = 7 x 4x+x = x = 6 x = 1 För x = 1 ger L 1 y = 9, skärningspunkten är alltså ( 1,9). Den andra punkten vi ska använda här är (0,0) och nu kan vi bestämma k k = = 9 Så nu kan vi skriva funktionen som L 3 : x = 9x, eller hur KTH: Alldeles utmärkt. Känns det som du börjar behärska detta område nu? TB: Har ingen aning. Även om jag kunnat lösa de uppgifter du givit mig så finns det säker många andra som jag inte skulle klara. KTH: Det låter nästan som du vill ha fler! Vilket k-värde måste linjen y = kx+5 ha för att gå genom punkten (3,11)? TB: Vi vet att linjen skär y-axeln i (0,5). Då har vi två punkter och kan enkelt räkna ut k-värdet Detta ger funktionen y = x+5. Det var lätt k = = KTH: Linjerna L 1 och L skär varandra i (4, 3). Bestäm linjernas funktioner då följande är givet { y = k x 11 y = m 3x TB: Om jag sätter in den givna punkten i L 1 får jag 3 = k 4 11, som ger k =. Om jag på samma sätt sätter in punkten i L, så får jag 3 = m 3 4, m = 9. De två linjernas funktioner är då L 1 : y = x 11 och L : y = 3x+9 KTH: Här får du tre linjer som tillsammans bildar en triangel vars area vi vill bestämma L 1 : y = 4x L : y = 6 L 3 : y = x TB: Jag har inte en aning om hur man ska göra. Hjälp mig. KTH: Här får du linjernas grafer, som säkert kommer att hjälpa dig in på rätt spår Figur 6: Ser du vilken linje som är vilken? TB: L är parallell med x-axeln, det är nog tursamt. Den linjen får bli bas i triangeln. Jag måste ta reda på var linjerna skär varandra L 1 = L, L 1 = L 3 och L = L 3. Mycket räkna blir det. Vi tar dem i tur och ordning: Håkan Strömberg 7 KTH STH

8 L 1 och L skär varandra i (,6) 4x = 6 x = L 1 (x) och L 3 (x) skär varandra i ( 1 3, 3 ) 4x = x 6x = x = = x x = 3 L (x) och L 3 (x) skär varandra i ( 3,6). Så här långt blev det ju ganska enkla uträkningar. Men sen? KTH: Hur lång är nu basen? Hur bestämmer man höjden? TB: Basen måste vara b = ( 3) = 5 och höjden h = 3 +6 = 0 3. Nu kan jag använda: A = b h = = 50 3 KTH: Hur många linjer finns det som går genom en given punkt? TB: Hur många som helst förstås. Det finns ju oändligt många k-värden. KTH: Hur många linjer finns det som går genom en given punkt och har ett givet k-värde? TB: Bara en KTH: Utan alltför mycket räknande ska du nu kunna skriva ned funktionerna för de fyra linjerna i figur 7 Figur 7: TB: Först tar vi de två linjerna som har positiva k värden A och B. A går genom origo och har då m=0. k-värdet är 1. Detta ger L A : y = x. B har också k-värdet 1, men skär y-axeln i (0, ) och då får jag L B : y = x. Så över till C och D. Båda har negativa k-värden rättare sagt k = 1. De är parallella. De skär y-axeln i (0,) respektive (0,4). Vilket ger L C : y = 4 x och L D : y = x KTH: Punkterna P1( 4, 17) och P(1, 31) ligger på samma räta linje. Vilken är punkten P3 som också ligger på linjen, mitt emellan dessa? TB: x-koordinaten är (1+( 4))/ = 4 och y koordinaten är (31+( 17))/ = 7. P3 = (4,7). Är det rätt? KTH: Ja TB: Ha ha, jag behövde inte bestämma någon funktion som jag först tänkte. Hur kunde det bli rätt egentligen. Håkan Strömberg 8 KTH STH

9 KTH: Att x-koordinaten är 4 är väl inte konstigt? Den ligger ju mitt emellan 4 och 1 på x axeln. På samma sätt är det mer eller mindre självklart att y-koordinaten är 7. En figur? Figur 8: KTH: Tack för den här gången TB: Tack själv. Jag måste faktiskt säga att det var otroligt jobbigt. KTH: Ja, men du har gjort ett bra jobb och kommer att klara alla uppgifter som har med räta linjen att göra. Läxa 1. Bestäm ekvationen för den linje som går genom punkterna P 1 ( 3,4) och P (9, ). Läxa. Bestäm riktningskoefficienten för linjen 3x+4y 6 = 0 Läxa 3. Bestäm ekvationen för en linje som går genom punkten (, 3) och är parallell med linjen x 5y = 0 Läxa 4. Lös följande ekvationssystem { x y = 3x+y = 6 Håkan Strömberg 9 KTH STH

10 8 6 4 B A C Läxa 5. Bestäm ekvationen för linjerna A, B och C i figuren Läxa 6. Bestäm ekvationen för den linje som går genom origo och som är parallell med linjen som går genom punkterna P 1 (8,4) och P (1, 3) Läxa 7. Hur många skärningspunkter får man när man ritar de tre linjerna x y+9 = 0 x+y 6 = 0 3x+y+ = 0 Läxa 8. En fyrhörning har sina hörn i punkterna (0,0),(3,0),(6,10) och (0,4). Bestäm koordinaterna för diagonalernas skärningspunkt. Läxa 9. Bestäm P 1 (x,31) och p (10,y) då man vet att punkterna ligger på linjen y = 4x+3 Läxa 10. Bestäm P 3 (5,y) då man vet att punkten ligger på samma linje som P 1 (8,19) och P (3,9) Läxa 11. Bestäm ekvationen till den linje som går genom origo och som skär linjen y = x under rät vinkel. Läxa 1. Vi har linjen y = x. Bestäm k-värdet för den linje som går genom punkten P 1 (10,0) och som tillsammans med x-axeln och y = x bildar en triangel med arean 10. Håkan Strömberg 10 KTH STH

11 Läxa 13. Hur långt är det mellan punkterna P 1 (3,4) och P (6,8)? Läxa 14. Bestäm a i punkten P 1 (a,1) så att linjen som också går genom P (4,10) får m-värdet m = Läxa 15. Bestäm de två punkter där linjen med ekvationen skär de två axlarna. x 3 + y = 1 Läxa Lösning 1. Först bestämmer vi k-värdet k = 4 ( ) 3 9 = 6 1 = 1 Vi har nu y = 1 x+m Återstår att bestämma m. Vi väljer en av punkterna, P 1 och sätter in i ekvationen Svar: 4 = 1 ( 3)+m 4 = 3 +m 4 3 = m m = 5 y = 1 x+ 5 Läxa Lösning. Bestäm riktningskoefficienten för linjen 3x+4y 6 = 0 4y = 6 3x 4y = 6 3x 4 4 y = 6 4 3x 4 y = 3x y = 3 4 x+ 3 Svar: k-värdet är 3 4. Läxa Lösning 3. Först skriver vi ekvationen x 5y = 0 på k-form x 5y = 0 x = 5y y = x 5 Håkan Strömberg 11 KTH STH

12 För denna linje är k = 1 5. Samma k-värde har den linje vi är på jakt efter och vi kan skriva y = 1 5 x+m Vi söker nu m-värdet och får det genom att använda den givna punkten (, 3) som ligger på denna linje Svar: 5 ( 3) 5 3 = 1 5 +m 5 = m m = 17 5 y = 1 5 x 17 5 Läxa Lösning 4. Vi löser ut y ur den andra ekvationen och får y = 6 3x Detta uttryck för y sätter vi nu in i den första ekvationen och får x (6 3x) = x 1+6x = 7x = 14 x = Detta värde på x kan vi nu sätta in i vilken som helst av de två ursprungliga ekvationerna. Vi väljer den första y = 0 = y y = 0 Svar: x = och y = 0 Läxa Lösning 5. Läs av skärningen med y-axeln för att bestämma m Rita en rätvinklig triangel under linjen för att bestämma x och y. Svar: A) y = x+3 B) y = x+1 C) y = x Läxa Lösning 6. Först bestämmer vi k-värdet för den linje vår linje ska vara parallell med: Då kan vi så här långt skriva k = 4 ( 3) 8 1 y = x+m = 7 7 = 1 Linjen ska ju gå genom origo (0,0) så därför får vi m = 0. Svar: y = x Läxa Lösning 7. Om vi först bestämmer skärningen mellan de två första linjerna genom att lösa ut x ur båda får vi x y+9 = 0 x = y 9 och x+y 6 = 0 x = 6 y Håkan Strömberg 1 KTH STH

13 Nu kan vi bestämma x för skärningspunkten mellan dessa linjer Detta ger oss x för skärningspunkten 6 y = y = y+y 3y = 15 y = 5 x 5+9 = 0 x = 4 De två första linjerna skär varandra i punkten ( 4,5) Vi bestämmer nu på samma sätt skärningspunkten mellan den första och tredje linjen. Lös ut x ur tredje ekvationen 3x+y+ = 0 x = y 3 Nu bestämmer vi y för skärningen mellan första och tredje ekvationen Till sist bestämmer vi tillhörande x-koordinat y 9 = y 3 3(y 9) = y 3y 7 = y 3y+y = 7 5y = 5 y = 5 x = 5 9 x = 4 Av detta kan vi sluta oss att alla tre linjerna skär varandra i en och samma punkt ( 4,5) Läxa Lösning 8. Plotta punkterna så att Du ser att punkterna (0,0) och (6,10) ligger på den ena diagonalen och att (3,0) och (0,4) ligger på den andra. Vi har då först att bestämma den första diagonalens ekvation. Dess k-värde är k 1 = = 5 3 m-värdet får vi direkt genom punkten (0,0) till m 1 = 0. Den första diagonalens ekvation är alltså y = 5 3 x Så över till den andra diagonalen. Dess k-värde k = = 4 3 På samma sätt får vi m-värdet gratis genom punkten (0,4) till m = 4 och den andra diagonalen har ekvationen y = 4 3 x+4 Håkan Strömberg 13 KTH STH

14 Genom att sätta 4 3 x+4 = 5 3 x Återstår så att bestämma y för skärningspunkten Svar: Linjerna skär varandra i punkten ( 4 3, 0 9 ) 4 = 3x 3 + 4x 3 9x = 4 3 x = 4 3 y = = 0 9 Läxa Lösning 9. Vi sätter in de halva punkter vi har i ekvationen och får först Detta ger P 1 (7,31). För nästa punkt får vi Alltså P (10,43) 31 = 4x+3 8 = 4x x = 7 y = y = 43 Läxa Lösning 10. Föst bestämmer vi ekvationen för den linje som går genom P 1 och P. k-värdet P 1 insatt i y = x+m ger k = = 19 = 8+m m = 3 Ekvationen är y = x+3. Då x = 5 som i P 3 får vi Svar: P 3 (5,13) y = 5+3 = 13 Läxa Lösning 11. Vi vet att två linjer skär varandra under rät vinkel om för de två k-värdena gäller att k 1 k = 1 Eftersom den givna linjen har k-värdet k = 1 får vi k-värdet för den andra genom 1 k = 1 k = Vi har nu y = x+m och får genom punkten (0,0) får vi direkt att m = 0 Svar: y = x Läxa Lösning 1. Vi antar att skärningspunkten mellan de två linjerna är (a,b). Eftersom y = x så kan vi skriva att skärningspunkten ska vara (a,a). Triangelns bas är uppenbarligen 10 och dess höjd kan vi bestämma genom A = bh Håkan Strömberg 14 KTH STH

15 som ger 10 = 10h Triangelns höjd ska alltså vara h =. Detta betyder att skärningspunkten är (,). Vi kan nu bestämma det efterfrågade k-värdet k = 0 10 = 8 = 1 4 Läxa Lösning 13. Eftersom x = 6 3 = 3 och y = 8 4 = 4 har vi en rätvinklig triangel med kateterna 3 och 4. Med hjälp av Pythagoras sats kan vi bestämma hypotenusan, som är detsamma som det avstånd vi vill beräkna. a = 3 +4 = 5 = 5 Läxa Lösning 14. Vi har så här långt y = kx. Genom att sätta in punkten P i denna ekvation får vi k-värdet 10 = k = 4k k = 3 Linjen har ekvationen y = 3x Vi kan nu bestämma a genom att sätta in den andra punkten Svar: a = 1 1 = 3a a = 1 Läxa Lösning 15. Bestäm de två punkter där linjen med ekvationen skär de två axlarna. x 3 + y = 1 Vi startar med att forma om ekvationen: x 3 + y = 1 y = 1 x ( 3 y = 1 x ) 3 y = x 3 y = x 3 + Linjens ekvation kan då skrivas y = x 3 + Då x = 0 får vi direkt y =. Skärningen med y-axeln är alltså (0, ). Skärningen med x-axeln får vi genom att lösa denna ekvation 0 = x 3 + x = 3 x = 3 x = 3 Svar: (0,) och (3,0). Det är ingen tillfällighet att talen och 3 finns i nämnarna i den ursprungliga ekvationen. Håkan Strömberg 15 KTH STH

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

geometri ma B 2009-08-26

geometri ma B 2009-08-26 OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 digitala övningar med TI 82 Stat, TI 84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0.08.06 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Träningsprov funktioner

Träningsprov funktioner Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Uppgifter till praktiska tentan, del A. (7 / 27)

Uppgifter till praktiska tentan, del A. (7 / 27) Uppgifter till praktiska tentan, del A. (7 / 27) I. Sortering/Sökning: III II. Representation/Omvandling/format/protokoll: II III. Strukturering: II I alla problem, där bokstäver förekommer, antar vi att

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut. vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

MVE365, Geometriproblem

MVE365, Geometriproblem Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Matematiska uppgifter

Matematiska uppgifter Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

9-1 Koordinatsystem och funktioner. Namn:

9-1 Koordinatsystem och funktioner. Namn: 9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

ClassPad 330 Plus studentexamen Hösten 2012 kort matematik. Mer tid för matematik och mindre tid för att lära sig räknaren.

ClassPad 330 Plus studentexamen Hösten 2012 kort matematik. Mer tid för matematik och mindre tid för att lära sig räknaren. ClassPad 330 Plus studentexamen Hösten 2012 kort matematik Mer tid för matematik och mindre tid för att lära sig räknaren. Kära läsare! Användningen av CAS-beräkningar i studentexamen är ännu i ett tidigt

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b

Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b Sidan 19 Lös ekvationen grafiskt. Genom att rita upp vänster- och högerled i samma koordinatsystem, så kan vi lösa uppgiften grafiskt. Vi

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 007 MATEMATIK 5 veckotimmar DATUM : 11 Juni 007 (förmiddag) SKRIVNINGSTID : 4 timmar (40 minuter) TILLÅTNA HJÄLPMEDEL : Europaskolornas formelsamling En icke-programmerbar, icke-grafritande

Läs mer