Ekvationslösning genom substitution, rotekvationer

Storlek: px
Starta visningen från sidan:

Download "Ekvationslösning genom substitution, rotekvationer"

Transkript

1 Sidor i boken -3, Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar ett positivt tal. Ekvationen x+ = 3 saknar därför rot. Däremot har ekvationen x+ = 3 roten x = 8, vilket man inser om båda leden i ekvationen kvadreras. x+ = 3 ( x+) = 3 x+ = 9 x = 8 För att förstå det här med rotekvationer måste vi införa några grafer (eller kurvor). Lite för tidigt måste vi här nämna ordet funktion. f(x) = x är just en funktion. När vi plottar dess graf får vi En graf till ska vi plotta, som ni säkert redan är bekanta med. Vi kallar den räta linjen. Ett exempel y = x Nu över till rotekvationer. Detta är en rotekvation som vi vill lösa Exempel. x = x + 3 Håkan Strömberg KTH STH

2 Här undrar vi som vanligt, när är vänstra ledet lika med högra? Om vi plottar de två graferna i samma figur får vi Rötterna får vi nu genom att läsa av var de två graferna skär varandra. På ett ungefär verkar de vara x och x 9. Observera dock att det aldrig i den här kursen är tillåtet att ge grafiska lösningar. Därför måste vi lösa ekvationen analytiskt. x = x+3 ( x) = ( x+3 ) x = (x+3) x = x +6x+9 6 6x = x +6x+9 x 0x+9 = 0 x = 5± 5 9 x = 5± x = 9 x = Det stämmer med vår grafiska avläsning! Lösningen är exakt x = 9 och x =. Vi utgår ifrån ( ) att alla vet att =. Idén med att lösa rotekvationer är alltså att kvadrera båda leden och hoppas att rottecknen försvinner. Men det finns komplikationer! Exempel. Lös ekvationen x = x Vi plottar funktionerna och får Här skär den räta linjen rotgrafen endast en gång. Vi gissar att roten är x =. Över till den analytiska lösningen x = x ( x) = ( x) x = x+x x = x+x x 5x+ = 0 x = 5 ± (5 ) 5 x = 5 ± x = 5 ± 3 x = x = Håkan Strömberg KTH STH

3 Men här får vi ju två rötter!. Ja, men en är falsk. När man kvadrerar båda sidor i en ekvation kan det uppstå falska rötter! Man avgör om roten är falsk genom att sätta in den i den ursprungliga ekvationen = ger = och verkar helt OK. Men ger, så x = är falsk. Svar: x =. Vi tar en till för säkerhets skull Exempel 3. = x = x+ Först den grafiska lösningen Oj då, här verkar inte de två graferna skära varandra över huvud taget! Det ska bli intressant att se vad den analytiska lösningen ger x = x+ ( x) = (x+) x = x +x+ x +x+ = 0 x = ± ( ) x = ± x = ± Negativt under rottecknet, lika med inga reella rötter. Svar: Ekvationen saknar lösning. 3 Mer om polynomekvationer Här några polynomekvationer Förstagradsekvation 0x + 53 = 73 x = Andragradsekvation x x = 0 x = 3, x = Tredjegradekvation x 3 +6x 63x 09 x =, x = 7, x 3 = 3 Fjärdegradsekvation x +x 3 x 9x+08 x = x = 3, x 3 = 3, x = Ekvationer av första och andra graden ska vi alltid klara av hur de än ser ut. En godtycklig ekvation av tredje graden, klarar åtminstone inte jag av utan dator eller tabell. Samma gäller :e-gradare. Då talar vi hela tiden om exakta lösningar. Allmänna 5:e-gradare och högre gradtal, klarar ingen av att lösa exakt, därför att man bevisat att det inte går. Men det hindrar inte att det finns speciella ekvationer av alla gradtal som man hädelsevis kan lösa. Till exempel Håkan Strömberg 3 KTH STH

4 Exempel. x 3 = 7 med som åtminstone har en rot x = 3 (och två andra imaginära). Här kommer en speciell typ av :e-gradare som du ska kunna lösa Exempel 5. Lös ekvationen x 5x + = 0 Ett krav är att ekvationen saknar termer av 3:e och :a graden, som här. Knepet är att man substituerar x = t och får ekvationen t 5t+ = 0 5 t = 5 ± t = 5 ± 5 t = 5 ± 9 t = 5 ± 3 t = t = Men nu har vi ju bestämt att x = t, så då får vi x =, x = ±, x =, x = och att x =, x = ± som ger x 3 = och x = Problem. Lös ekvationen x+ = x En rotekvation av den enklare sorten x+ = x ( x+) = ( x ) x+ = x x = Vi ser lång väg att detta är en äkta rot eftersom + Svar: x = Problem. Lös ekvationen x +5 = x 5 x = är en falsk rot. Svar: Ekvationen saknar rötter. x +5 = x 5 ( x +5) = (x 5) x +5 = x 0x+5 0x = 5 5 x = Vänstra ledet Högra ledet Håkan Strömberg KTH STH

5 Problem 3. Lös ekvationen Vi testar x = x = är en äkta rot. Vi testar x = 7 x = 7 är en falsk rot Svar: x =. x x 8 = 0 x x 8 = 0 x 0 = x 8 (x 0) = ( x 8) x 0x+00 = x 8 x x+08 = 0 68 x = ± 08 x = ± 9 x = ± 7 x = x = 7 Vänstra ledet Högra ledet Vänstra ledet Högra ledet Problem. Lös ekvationen x+ x = x x+ x = x ( x+ x ) = ( x ) x+ x+ x +x = x x+ x = x x x+ (x+)(x ) = 7 x (x+)(x ) = 7+x ( (x+)(x )) = (7+x) (x+)(x ) = 9+x+x (x x+x ) = 9+x+x x +x 6 = 9+x+x 3x x 65 = 0 x x = 0 x = 3 ± x = 3 ± 3 x = 5 x = 3 3 Håkan Strömberg 5 KTH STH

6 Så är det dags att testa rötterna Vänstra ledet Högra ledet Roten x = 5 är en äkta rot Vänstra ledet Högra ledet I två av termerna blir det negativt under rottecknet vilket betyder att roten är falsk. Svar: x = 5 Problem 5. En bakteriekultur tillväxer enligt formeln N(x) = x+5x där N(x) är antalet bakterier x minuter efter försökets början. Hur länge dröjer det innan antalet bakterier har fördubblats? Antalet bakterier i burken följer funktionen N(x) = x+5x. Efter minuter till exempel finns det N() = = Hur många bakterier finns det i burken när försöket startar? Får vi genom T(0) = 500. Vi vill alltså ha reda på hur lång tid det dröjer innan det finns dubbelt så många Detta ger oss ekvationen: x+5x = x+x = 00 x +x 00 = 0 x = 7± 9+00 x = 5. x = 9. Som du ser började vi dividera ekvationen med 5. Den här ekvationen är inte så enkel, det vill säga den ger inte heltalsrötter. Åter en ekvation där en av rötterna är omöjlig. Svaret blir då 5. minuter. Lös ekvationen Problem 6. x (x+) 6(x+) = 0 För att kunna lösa ekvationen x (x+) 6(x+) = 0 får man absolut inte starta med att utveckla parenteserna, för då hamnar man i en tredjegradsekvation, som vi inte har något verktyg för att lösa. Nej, titta i stället på ekvationen. Vad händer då x =? Båda termerna blir ju 0. Vi har hittat en rot x =. Dividerar vi nu båda sidor med (x+) återstår x 6 = 0 eller x = 6. Huvudräkning, x = 8 och x 3 = 8. Tre rötter!? Inte ett dugg överraskade, om en förstagradsekvation har en rot, en andragradsekvation två rötter, så är det väl logiskt att en tredjegradsekvation har tre. Lös ekvationen Problem 7. 3x 5 = x Ekvationen 3x 5 = x ser kanske besvärligare ut än den i verkligheten är. Rottecknet försvinner om upphöjer det till. Jag menar att ( x ) = x Vi kvadrerar alltså båda sidor i Håkan Strömberg 6 KTH STH

7 ekvationen: 3x 5 = x ( 3x 5 ) = (x ) 3x 5 = x + x x 5x+6 = 0 x = x = 3 Som tur är kan vi direkt se vilka rötterna är genom knepet som vi nämnt. Nu tillkommer en komplikation när det gäller rotekvationer. Vid kvadreringen kan falska rötter tillkomma och man är alltid tvungen att testa om de duger genom att sätta in dem i den ursprungliga ekvationen. Som vi ser uppfyller x = villkoret att båda sidor ska vara lika 3 5 =. Detta gäller även för x = 3 som ger = 3. I figur visar vi grafen Figur : Problem 8. Lös ekvationen s+3 7 s = Den här ekvationen är verkligen besvärlig! Kvadrerar vi båda sidor får vi fortfarande ett rottecken kvar. Men varför skulle man då inte kunna kvadrera en gång till. s+3 7 s = ( s+3 7 s ) = 0 (s+3)(7 s) = 8 = (s+3)(7 s) 6 = (s+3)(7 s) 6 = 7s s +9 3s s +6s 7 = 0 s = 3 s = 9 OK, nu har vi funnit två rötter s = 3 s = 9. Innan vi ger dem som svar måste vi pröva dem. s = = = s = 9 ( 9)+3 7 ( 9) = Alltså är det bara s = 3 som fungerar. Men hur ska man förstå detta? Innan vi kvadrerar har vi funktionerna (VL) f (s) = s+3 7 s och (HL) f (s) =. Plottar vi dem får vi följande graf: Vi ser helt klart att ekvationen bara har en rot. Den ena kurva skär den andra på ett ställe, s = 3. Plottar vi nu de två funktionerna f 3 (s) = ( s+3 7 s ) och f (s) =, sådana de ser ut efter en kvadrering får vi En extra (falsk) rot har dykt upp för x = 9, som förresten inte försvinner då vi kvadrerar ytterligare en gång. Denna uppgift är kanske onödigt komplicerad i den här delen av kursen. Håkan Strömberg 7 KTH STH

8 Figur : Figur 3: Räkna i första hand uppgifterna på sidan 7 73 och 3. Läxa. Lös ekvationen x+ = x Läxa. Lös ekvationen x++ x = 3 Läxa 3. Lös ekvationen x+5 = x Läxa. Bestäm konstanten a, så att ekvationen får en rot x = ax (a 5)x (a ) = 0 Läxa 5. Lös ekvationen x 0x +9 = 0 Läxa Lösning. x+ = x ( x+ ) = ( x ) x+ = x x = Varje gång vi i en ekvation kvadrerar båda sidorna, måste vi testa att att rötterna vi fått inte är falska. Håkan Strömberg 8 KTH STH

9 Sätter vi in x = får vi 6 = 6 Vilket betyder att roten är äkta! Svar: x = Läxa Lösning. x++ x = 3 ( x++ x ) = 3 (x+)+(x )+ x+ x = 9 x++ (x+)(x ) = 9 = 7 x ( (x+)(x )) = (7 x) (x+)(x ) = (7 x) (x x+x 8) = 9+x 8x Denna rot måste prövas och det visar sig att den fungerar. x +8x 3 = 9+x 8x 8x 3 = 9 8x 36x = 8 x = 9 Svar: x = 9 Läxa Lösning 3. x+5 = x ( x+5 ) = ( x) x+5 = x+x x 3x = 0 0 = 3x+x x = 3 ± 9 + x = 3 ± 5 x = 3 ± 5 Vi testar x = som är falsk. Sedan testar vi x = x = x = V.L. +5 = 3 H.L. = 3 V.L. +5 = H.L. ( ) = Håkan Strömberg 9 KTH STH

10 som är äkta Svar: x = Läxa Lösning. Vi vet att en rot är x = och sätter därför in den Båda dessa ekvationer har en rot x = och Läxa Lösning 5. Vi substituerar t = x. ax (a 5)x (a ) = 0 a (a 5) (a ) = 0 a a+5 a + = 0 a +a 6 = 0 a = ± +6 a = ± + a = ± 5 a = a = 3 x ( 5)x ( ) = 0 x +x 3 = 0 x = x = 3 ( 3)x ( ( 3) 5)x (( 3) ) = 0 3x +x 8 = 0 x = x = 8 3 x 0x +9 = 0 t 0t+9 = 0 t = 5± 5 9 t = 5± t = 9 t = I nästa steg löser vi först och sedan Svar: x = 3, x = 3, x 3 =, x = 9 = x x = ± 9 x = 3 x = 3 = x x = ± x 3 = x = Håkan Strömberg 0 KTH STH

11 Problem 9. (a b)(a +ab+b )+(a+b)(a ab+b ) (a b)(a +ab+b )+(a+b)(a ab+b ) (a 3 +a b+ab a b ab b 3 )+(a 3 a b+ab +a b ab +b 3 ) a 3 +a b+ab a b ab b 3 +a 3 a b+ab +a b ab +b 3 3 a 3 +a 3 +a b a b a b+a b+ab +ab ab ab b 3 +b 3 a 3 När man multiplicerar en parentes med 3 termer med en med termer får man total 3 = 6 termer. Total ska vi här alltså hantera termer (). I (3) har vi samlat ihop liknade termer. Den som har en administrativ vana kan gå direkt från () till svaret. Svar: a 3 Problem 0. a a 3 a+ a 3 a a 3 a+ a 3 3a 3 a 3 3a 3 + a 3 3a a 3 3a+a 3 3 a 3 3 a Vi startar med att göra de liknämnigt i täljaren och nämnaren oberoende av varandra. Nu råkar båda ha samma minsta gemensamma nämnare (). Nu kan vi skriva termerna på samma bråkstreck (). Division av två bråk är samma sak som att multiplicera det första med det andra inverterat (3). Efter förkortning får vi Svar: Håkan Strömberg KTH STH

12 Problem. (6a+9) (a+9) (a+6) (6a+9) (a+9) (a+6) (36a +36+8a) (a +8+36a)) a +36+a 3 3a 9a+80 a +a+35 8(a a+35) a +a+35 8 Två gånger första kvadreringsregeln i täljaren och en gång i nämnaren ger (). Sammanslagning av termer ger (). I () ser vi att det är möjligt att bryta ut 8 i täljaren som ger (3). Svar: 8 Problem. a b a + a a b ab+b a ab a b a + a a b ab+b a ab (a b) (a b) (a b) a + a a a (a b) b(a+b) a(a b) (a b) +a b(a+b) a(a b) 3 5 a +b ab+a ab b 3a 3ab a(a b) 3a(a b) a(a b) a(a b) 6 3 Vi strävar nu efter att kunna skriva de tre bråken på samma bråkstreck. a(a b) är en gemensam nämnare (för övrigt den minsta). Vi förlänger bråken med lämpliga uttryck (). Nu har vi nått första målet (). I (3) förenklar vi täljaren till resultatet i (). I () ser vi att det är möjligt att bryta ut 3a. Efter förkortning av (5) för vi Svar: 3 Håkan Strömberg KTH STH

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Sidor i boken

Sidor i boken Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Lektionsanteckningar. för kursen Matematik I:1

Lektionsanteckningar. för kursen Matematik I:1 Lektionsanteckningar för kursen Matematik I: 5 0 5 4 4 6 5 0 till mina studenter i TBASA-AV VT05 Håkan Strömberg TBASA-GH4 Planering i matematik I: P 4/5 Lärare: Niclas Hjelm niclas.hjelm@sth.kth.se 08-790

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

Avsnitt 2, introduktion.

Avsnitt 2, introduktion. KTHs Sommarmatematik Introduktion 2:1 2:1 Bråkstreck Avsnitt 2, introduktion. Gemensamt bråkstreck. Två fall: Ingen gemensam faktor i nämnarna (Ex: ) Se Exempel 1 Gemensam faktor i nämnarna (Ex: ) Se Exempel

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

Algebra och rationella uttryck

Algebra och rationella uttryck Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1 Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

Allmänna Tredjegradsekvationen - version 1.4.0

Allmänna Tredjegradsekvationen - version 1.4.0 Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1 Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna

Läs mer

Övningar - Andragradsekvationer

Övningar - Andragradsekvationer Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1 Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Här presenteras förslag på lösningar oc tips till många uppgifter i läroboken Matematik 000 kurs C Komvu som vi oppas kommer att

Läs mer

8-5 Ekvationer, fördjupning. Namn:.

8-5 Ekvationer, fördjupning. Namn:. 8-5 Ekvationer, fördjupning. Namn:. Inledning Du har nu lärt dig en hel del om vad en ekvation är och hur man löser ekvationer som innehåller en eller fler x-termer (om vi betecknar den okända med x).

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

Repetitionskurs i. elementär algebra, matematik. för DAI1 och EI1 ht 2014

Repetitionskurs i. elementär algebra, matematik. för DAI1 och EI1 ht 2014 Repetitionskurs i elementär algebra, matematik för DAI och EI ht 04 Chalmers Tekniska Högskola Reimond Emanuelsson II August 5, 04 Förord Detta kompendium är tänkt som en repetition av elementär algebra

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 4.1 Introduktion Introduktion Avsnitt 4 handlar om en viss typ av ekvationer där man skall vara försiktig med de lösningar som

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 4.1 Introduktion Introduktion Avsnitt 4 handlar om en viss typ av ekvationer där man skall vara försiktig med de lösningar som

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

9 Skissa grafer. 9.1 Dagens Teori

9 Skissa grafer. 9.1 Dagens Teori 9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Repetition ekvationer - Matematik 1

Repetition ekvationer - Matematik 1 Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

NpMa2a ht Max 0/0/3

NpMa2a ht Max 0/0/3 14. Max 0/0/3 Godtagbar ansats, t.ex. sätter ut lämpliga beteckningar och tecknar någon ekvation som krävs för bestämning av a +1 A PL med i övrigt godtagbar lösning med korrekt svar ( a = 12 ) +1 A PL

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 10) skrivs dessa

För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 10) skrivs dessa Avsnitt Olika typer av tal För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 0) skrivs dessa 0,,2,3,...,9,0,,... Samma naturliga tal

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Komplexa tal med Mathematica

Komplexa tal med Mathematica Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

x+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5

x+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5 Uppgifter med linjära ekvationssystem Tips för att lösa linjära ekvationssystem Då systemet saknar parametrar ställer man direkt upp totalmatrisen. Detta är endast av administrativa skäl, blir mer lättöverskådligt.

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1: Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd

Läs mer

Moment Viktiga exempel Övningsuppgifter. t 4 3t 2 +2 = 0. x 2 3x+2 = 0

Moment Viktiga exempel Övningsuppgifter. t 4 3t 2 +2 = 0. x 2 3x+2 = 0 Onsdag oktober kl :5, Sal 09, Moment Viktiga exempel Övningsuppgifter Variabelsubstitution Sats. Antag att funktionen f(x) har en primitiv funktion F(x) och att funktionen t(x) är deriverbar. Då gäller:

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition 3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer