f(x) = x 2 g(x) = x3 100

Storlek: px
Starta visningen från sidan:

Download "f(x) = x 2 g(x) = x3 100"

Transkript

1 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer när x växer för följande funktioner f(x) = x 2 g(x) = x3 100 h(x) = x x x 2 x 3 x Tal med fet stil visar största värdet hos de tre funktionerna. Vi ser alltså att h(x) så småningom tar över ledningen för att aldrig släppa den när x fortsätter att växa. Om vi studerar funktionsvärden för polynom av udda gradtal, ser vi att de antingen kommer nerifrån och försvinner uppåt mot. Koefficienten som tillhör termen med högsta gradtalet är > 0. eller kommer uppifrån och försvinner neråt mot. Koefficienten som tillhör termen med högsta gradtalet är < 0. Håkan Strömberg 1 KTH Syd

2 När det gäller polynom med jämna gradtal, ser vi att de antingen kommer nerifrån och försvinner neråt mot igen. Koefficienten som tillhör termen med högsta gradtalet är < 0. eller kommer uppifrån och försvinner uppåt mot igen Koefficienten som tillhör termen med högsta gradtalet är > 0. Vad kan man säga om termen med högsta gradtalet för dessa fyra grafer? (Vi antar att vi ser alla extrempunkter) Längst upp till vänster har vi en polynomfunktion av udda gradtal. Om det är så att man ser alla extrempunkter (en maxpunkt och en minpunkt) så måste det vara en 3:egradspolynom med positiv koefficient. Till exempel p(x) = 2x 3... Längst upp till höger har vi också ett 3:egradspolynom men denna gång med negativ koefficient framför x 3 -termen. Till exempel p(x) = x 3... Längst ned till vänster har vi en polynomfunktion av jämnt gradtal. Ser vi alla extrempunkter (en max- och två minpunkt) handlar det om ett 4:egradspolynom med positiv koefficient framför x 4 -termen. Till exempel p(x) = x 4... Längst ned till höger har vi också ett 4:egradspolynom, men denna gång med negativ koefficient framför x 4 -termen. Till exempel p(x) = 2x 4... Vi förstår av detta, att vilka koefficienter termer med lägre gradtal än har, så är det termen med högsta gradtalet som avgör kurvans utseende för stora negativa och positiva x. För att kunna skissa en funktion f(x) är det bra att känna till var funktionen kommer ifrån för stora negativa x vart funktionen tar vägen för stora positiva x Håkan Strömberg 2 KTH Syd

3 funktionens f(x) nollställen nollställen till funktionens derivata, f (x) ibland också andraderivatan, f (x) (nästa föreläsning) Om man har den här kunskapen kan man skissa funktionen f(x) Fjärdegradspolynom. Hur många olika skisser kan ett fjärdegradspolynom uppvisa? Figur 1: Maximalt kan det finnas tre extrempunkter. Det är rötterna till ekvationen f (x) = 0 som avgör hur många extrempunkter det finns. Då vi talar om f(x) som 4:egradspolynom vet vi att f (x) är av 3:e graden. Det betyder att f (x) = 0 har maximalt tre reella rötter. Vi vet också att grafen till ett 3:egradspolynom skär x-axeln minst en gång, vilket betyder att f (x) = 0 har minst en rot. Vilket betyder att f(x) har minst en extrempunkt. Vi ska nu skissa ett fjärdegradspolynom p(x) = x 4 12x x 2 80x + 48 Från tidigare vet vi att det är mycket svårt att lösa fjärdegradsekvationer, därför får vi här hjälp med rötterna. När vi deriverar p(x) får vi x 4 12x x 2 80x + 48 = 0 x 1 = 2 x 2 = 2 x 3 = 2 x 4 = 6 p (x) = 4x 3 36x x 80 Även rötterna till p (x) = 0 är svårfångade eftersom det är nästan lika svårt att lösa en tredjegradsekvetion. Även denna gång får vi hjälp 4x 3 36x x 80 = 0 x 1 = 2 x 2 = 2 x 3 = 5 Håkan Strömberg 3 KTH Syd

4 Nu har vi tillräckligt med kunskap om funktionen för att kunna skissa den. Vi ställer upp följande diagram för teckenstudier. x x < 2 x = 2 2 < x < 5 x = 5 x > 5 f (x) f(x) ց terrass ց min ր Vi sätter in ett stort negativt tal, till exempel 1000, och ser att f ( 1000) < 0. Det betyder att f(x) är avtagande. Vi ritar in en pil som pekar nedåt. Då x = 2 är f (x) = 0, alltså har vi träffat på en extrempunkt. Vi vet dock inte ännu vilken typ av punkt det handlar om. Då vi rör oss i intervallet 2 < x < 5 väljer vi ett möjligt x 1 och bestämmer f (x 1 ) till exempel f (3) = = 8 (De gånger talet x = 0 ingår i intervallet är det ett lämpligt värde, missa inte det när det är möjligt). Vi ser att f (3) < 0. Då måste f(x) åter vara avtagande. Vi ritar in en ny pil som pekar nedåt. Nu kan vi också avgöra vilken typ av extrempunkt vi har i x = 2 en terrasspunkt! Då x = 5 har vi en ny extrempunkt, vilken kan vi ana om vi studerar figur 1, men vi väntar med avgörandet. Nu är det dags att sätta in ett stort positivt x-värde dödar allt. Vi ser att f (1000) > 0 och att funktionen (äntligen) växer. Vi förstår då också att vi har en minpunkt för x = 5. Nu är det dags att visa grafen och konstatera att den överensstämmer med vår skiss Figur 2: 1 Skissa funktionen f(x) = x 4 8x 3 26x x 135 Håkan Strömberg 4 KTH Syd

5 Vi får reda på att f(x) har följande nollställen, f(x) = 0 har följande rötter (som vi egentligen inte behöver för denna uppgift) x 1 = 5 x 2 = 1 x 3 = 3 x 4 = 9 f (x) = 0 har följande rötter, som är betydligt viktigare för denna uppgift Rita diagrammet för teckenstudier Lösning: x 1 = 3 x 2 = 2 x 3 = 7 f (x) = 4x 3 24x 2 52x x x < 3 x = 3 3 < x < 2 x = 2 2 < x < 7 x = 7 x > 7 f (x) f(x) ց min ր max ց min ր Så här ser funktionen ut Figur 3: 2 Skissa funktionen f(x) = x 4 12x x 2 108x + 81 Vi får reda på att f(x) har följande nollställen, f(x) = 0 har följande rötter f (x) = 0 har följande rötter Rita diagrammet för teckenstudier Lösning: x 1 = 3 x 2 = 3 x 3 = 3 x 4 = 3 x 1 = 3 x 2 = 3 x 3 = 3 f (x) = 4x 3 36x x 108 x x < 3 x = 3 x > 3 f (x) 0 + f(x) ց min ր Håkan Strömberg 5 KTH Syd

6 Funktionens utseende Figur 4: 3 Skissa funktionen f(x) har följande nollställen: f (x) = 0 har följande rötter: Rita diagrammet för teckenstudier Lösning: f(x) = x 4 4x x 2 20x + 7 x 1 = 7 x 2 = 1 x 3 = 1 x 4 = 1 x 1 = 5 x 2 = 1 x 3 = 1 f (x) = 4x 3 12x x 20 x x < 5 x = 5 5 < x < 1 x = 1 x > 1 f (x) f(x) ր max ց terrass ց Så här ser funktionen ut Figur 5: Håkan Strömberg 6 KTH Syd

7 1 Skissa funktionen f(x) = x 2 + 2x 8 Här får du inga rötter eftersom du själv kan ta reda på dem! Rita diagram för teckenstudier. 2 Skissa funktionen f(x) = x 3 6x 2 135x Här får du rötterna till f(x) = 0, fast du inte behöver dem: x 1 = 11 x 2 = 4 x 3 = 13 Rötterna f (x) = 0 kan du ta reda på själv. Rita diagram för teckenstudier. 3 Skissa funktionen f(x) = 0 har följande rötter: f (x) = 0 har följande rötter: Rita diagrammet för teckenstudier f(x) = x x 3 4x 2 192x 320 x 1 = 4 x 2 = 2 x 3 = 4 x 4 = 10 x 1 = 2 x 2 = 3 x 3 = 8 1 f (x) = 0 ger x = 1 f (x) = 2x + 2 x x < 1 x = 1 x > 1 f (x) 0 + f(x) ց min ր Håkan Strömberg 7 KTH Syd

8 2 f (x) = 0 ger ekvationen f (x) = 3x 2 12x 135 3x 2 12x 135 = 0 x 2 4x 45 = 0 x = 2 ± x = 2 ± 7 x 1 = 9 x 2 = 5 x x < 5 x = 5 5 < x < 9 x = 9 x > 9 f (x) f(x) ր max ց min ր Så här ser funktionen ut Figur 6: 3 f (x) = 4x x 2 8x 192 x x < 2 x = 2 2 < x < 3 x = 3 3 < x < 8 x = 8 x > 8 f (x) f(x) ր max ց min ր max ց Så här ser funktionen ut Håkan Strömberg 8 KTH Syd

9 Figur 7: Räkna bokens uppgifter: 3112, 3114, 3117, 3118, 3119, 3121, 3122, 3125, 3126, TB: Här blir det inte så mycket räkna, eller hur? Vi har funktionen f(x) = x 3 + 5x 1. När x är stort, typ är det förstås x 3 -termen som dominerar. Dess värde överskuggar förstås alla andra termer i polynomet. Samma sak gäller för x = När x är litet, till exempel , så är det 1:an som dominerar över de andra två termerna. TB: Du, jag orkar inte bestämma f (x) = 0 en gång till. Har jag inte visat att jag kan det? KTH: I en skiss behöver du bara plocka fram vilken kategori kurvan tillhör Figur 8: TB: Det måste vara B TB: Vilken dålig variation det är. Vad skiljer denna funktion från de jag redan bestämt i de andra uppgifterna? Håkan Strömberg 9 KTH Syd

10 KTH: Räkna på får du väl se! f(x) = x 3 + 3x 2 f (x) = 3x 2 + 6x f (x) = 0 då 3x 2 + 6x = 0 x 2 + 2x = 0 x(x + 2) = 0 x 1 = 0 x 2 = 2 f(0) = 0 och f( 2) = 4. Maxpunkt i ( 2, 4) och minpunkt i (0, 0). När jag plottar den får jag: Figur 9: 3117 Den enda skillnaden från tidigare uppgifter är att man kan bestämma nollställena till f(x) därför att det är möjligt att lösa ekvationen f(x) = 0. Man ser från grafen att detta är riktigt. x 3 + 3x 2 = 0 x 2 (x + 3) = 0 x 1 = 0 x 2 = 0 x 3 = 3 TB: En fjärdegradspolynom. En nyhet! f(x) = 25+28x 2 x 4. Den här kan ha enda upp till tre extrempunkter. Men kan man verkligen ta reda på var de finns eftersom vi varken kan lösa 3 eller 4 gradsekvationer. KTH: Vi har tidigare lös denna typ av ekvationer. Den då x 3 och x termer saknas. Hur gör man? TB: Grubbel, grubbel... KTH: Nyckelordet heter substitution TB: Då vet jag, vi substituerar t = x 2 i ekvationen och får t t 2 = t t 2 = 0 t 2 28t 25 = 0 t = 14 ± t 1 = t 2 = Nu vet ja alltså vad t är då ska jag lösa t = x 2. Det måste bli två ekvationer en för t 1 och en för t 2. Varje ekvation ger mig två rötter till den ursprungliga Håkan Strömberg 10 KTH Syd

11 ekvationen: x 1 = x 2 = x 3 = x 4 = x 1 och x 2 är inte reella eftersom vi får ett negativt tal under rottecknet. Återstår de de två reella x och x Här är grafen som bekräftar: Figur 10: KTH: Du vet nu att det finns två nollställen till funktionen och i grafen kan vi se att det finns tre extrempunkter, två maximum och ett minimum. Kan du ta reda på i vilka punkter de ligger? TB: Principen för hur det ska gå till, känns som jag har visat många gånger nu, men eftersom derivatan är ett polynom av tredje graden kan det bli knepigt, om inte omöjligt att finna rötterna. Jag gör ett försök: 3118 f (x) = 56x 4x 3 f (x) = 4x(14 x 2 ) x 1 = 0 x 2 = 14 x 2 = 14 Det blev ju inga problem alls. f(0) = 25 ger minimum i punkten (0, 25) och f( 14) = 221 och f( 14) = 221 ger maximum i punkterna ( 14, 221) och ( 14, 221) TB: En funktion given på ett lite annorlunda sätt f(x) = 4x(x 6)(x 10). Detta gör att det blir huvudräkning att bestämma rötterna till f(x) = 0. De blir x 1 = 0, x 2 = 6 och x 3 = 10. KTH: Är du säker på att det inte finns fler rötter. TB: Ja, för om jag skulle utveckla parenteserna så skulle det sluta i en polynom av tredje graden. Det ser man på långt håll. Men när jag nu ska ta reda på Håkan Strömberg 11 KTH Syd

12 extrempunkterna kommer jag inte ifrån att utveckla parenteserna: f(x) = 4x(x 6)(x 10) f(x) = 4x 3 64x f (x) = 12x 2 128x f (x) = 0 då 12x 2 128x = 0 ( 2 8 ) 19 x 1 = ( ) 19 x 2 = Det blev inga snälla värden f(x 1 ) = och f(x 2 ) = Vi har en maximipunkt i (2.4274, ) och en minpunkt i ( , ) Figur 11: KTH: Det blev lite mer än en skiss av kurvan, eller hur? TB: Jag har en uppgift kvar. När är f(x) > 0. Dels när 0 < x < 6 och då x > 10. Lätt att säga när man har grafen TB: Vi känner alltså rötterna x 1 = 2, x 2 = 1 och x 3 = 4 till ekvationen p(x) = 0 och vet att a < 0 i f(x) = ax 3 +bx 2 +cx+d. Nu ska jag skissa kurvan. Man kan inte bestämma a, b, c och d eftersom man har fyra obekanta och tre villkor, de tre rötterna. Tidigare har vi sagt att det finns oändligt många polynom av tredje graden med de givna rötterna. Så därför måste det verkligen bli frågan om en skiss den här gången. Ekvationen (x + 2)(x 1)(x 4) = 0 har de tre givna rötterna. Om jag expanderar detta uttryck får jag x 3 3x 2 6x + 8 = 0. Motsvarande funktion p(x) = x 3 3x 2 6x + 8 är alltså en av många. Så här skulle man kunna skriva alla p(x) = m(x 3 3x 2 6x + 8). m kan nu vara vilket tal som helst. Speciellt i texten står det att koefficienten till x 3 ska vara negativ, så varför inte låta m = 1. Genom att plotta denna funktion får vi svaret. Håkan Strömberg 12 KTH Syd

13 KTH: Kan du inte istället resonera dig fram till hur grafen ser ut. TB: Vi har alltså p(x) = x 3 + 3x 2 + 6x 8. När x är ett stort negativt tal är p(x) > 0 vilket betyder att kurvan kommer snett uppifrån vänster, skär x-axeln i x = 2, når ett minimum någonstans mellan x > 2 och x < 1. Vänder förstås där till positiv lutning och skär x-axeln igen i x = 1. Snart når den ett maximum för att åter vända ner, skära x-axeln i x = 4 och försvinna snett ned åt höger. Rörigt eller hur. "En bild säger mer än tusen ord". Här kommer grafen Figur 12: 3121 TB: Den här gången får vi våra ledtrådar i form av en tabell 3122 x f(x) Jag ska nu försöka finna a, b, c och d till funktionen f(x) = ax 3 +bx 2 +cx+d. Det lär gå bra eftersom det finns fyra obekanta och fyra punkter givna. Vi har lite tur eftersom tre av punkterna samtidigt är nollställen till funktionen. Då kan man skriva f(x) = m(x + 3)(x + 1)(x 4). m kan nu ha vilket värde som helst eftersom vi kan förkorta bort m när vi ska lösa ekvationen f(x) = 0, m(x + 3)(x + 1)(x 4) = 0. Oavsett m har vi de tre rötterna. Men vi har en fjärde punkt given, (2, 5), som vi nu ska utnyttja för att bestämma m. f(2) = 5 leder till ekvationen m(2+3)(2+1)(2 4) = 5 som ger m = 1/6. Funktionen är alltså f(x) = 1 (x + 3)(x + 1)(x 4). Om jag utvecklar parenteserna så får 6 jag: f(x) = x 6 x3 6 TB: Jag är säker på att jag aldrig kommer att glömma denna teori efter denna exercis. En uppgift till, med samma innehåll. Man vill att jag ska skissa kurvan utan att försöka bestämma vare sig nollställen för f(x) eller f (x). Funktionen f(x) = 4x 3 3x 4 kan ha fyra nollställen och tre extrempunkter. Men samtidigt kan ett polynom av fjärde graden helt sakna nollställen och bara ha en extrempunkt. Hur ska jag veta vilket, bara genom att stirra på funktionen. KTH: Du måste förstås försöka få fram nollställena till f(x). Håkan Strömberg 13 KTH Syd

14 TB: Jag ser nu att vi kan skriva f(x) = x 3 (4 3x). Ekvationen f(x) = 0 har två rötter x 1 = 0 och x 2 = 4/3 KTH: Vilka rötter har då ekvationen x x x(4 3x) = 0? TB: Det är ju samma ekvation!? Aha, nu förstår jag vad du menar. Rötterna är x 2 = 0, x 3 = 0, x 4 = 0 och x 5 = 4/3. För f(10000) < 0, som betyder att funktionen kommer nedifrån vänster, skär x-axeln i punkten (0, 0). Når sedan ett maximum, för att vända nedåt igen, skära x-axeln för x = 4/3 och försvinna ned till höger. KTH: Nästan rätt. Frågan är vad som händer i (0, 0). TB: Jag vet inte. Får jag plotta funktionen? Figur 13: Nu ser jag det finns en terrasspunkt i (0, 0). Hur skulle jag kunna se det? KTH: Jag vet inte! Men du kommer säker att se det då du löser f (x) = f(x) = 4x 3 3x 4 f (x) = 12x 2 12x 3 f (x) = 0 då 12x 2 12x 3 = 0 x 2 x 3 = 0 x 2 (1 x) = 0 x 1 = 0, x 2 = 0, x 3 = 1 Ekvationen har en dubbelrot i (0, 0), som betyder att det finns en terrasspunkt här. Jag konstruerar en teckentabell TB: Varför denna enkla uppgift? f (x) x 0 1 KTH: Boken vill fästa din uppmärksamhet på att en funktion kan vara definierad endast i ett intervall på x-axeln. Den här är bara definierad för 2 x 12. TB: Så när man ska ta reda på funktionens maximum, så är det inte bara maxoch minpunkter man ska titta på. Man måste också ta reda på vilka värden funktionen har i början och slutet av intervallet. Håkan Strömberg 14 KTH Syd

15 KTH: Precis. TB: De skiljer på lokala och globala extrempunkter. Jag tror att jag förstår att, till exempel, ett lokalt minimum är ett minimum bara runt omkring en given punkt. Globalt däremot gäller, i hela intervallet. I så fall finns det fyra lokala extrempunkter. Två maxpunkter (5, 9) och (12, 11) och två minpunkter (2, 5) och (9, 2). Globalt kan det aldrig finnas fler än ett maximalt och ett minimalt värde. Här är (12, 11) den globala maxpunkten och (9, 2) den globala minpunkten TB: Som en repetition på förra uppgiften kan jag säga att man måste beräkna f(0.5), f(1), f(3) och f(4.5). Inte i någon annan punkt kan max- och minpunkterna ligga. Om nu funktionen är f(x) = x 3 6x 2 + 9x + 3, kan jag då lita på texten ovan att f (x) = 0 för x = 1 och x = 3? KTH: Ja, det kan du. TB: I så fall är det bara att utföra det jag sagt ovan f(0.5) = 6.125,f(1) = 7,f(3) = 3 och f(4.5) = Maxpunkten är alltså (4.5, ) och minpunkten (3, 3) 3128 b) TB: Nu är det tydligen intervall som gäller. Intervallet denna gång är 1 x 0 och funktionen är f(x) = x 3 x 2 x + 2. Det finns ju den möjligheten att en extrempunkt jag finner inte ligger inuti intervallet, så man får se upp f(x) = x 3 x 2 x + 2 f (x) = 3x 2 2x 1 f (x) = 0 då 3x 2 2x 1 = 0 x x 1 3 = 0 x = 1 3 ± x = 1 3 ± 2 3 x 1 = 1 x 2 = 1 3 Ja, titta x 1 = 1 tillhör inte intervallet. Återstår då att beräkna f( 1) = 1, f( 1/3) = 59/27 och f(0) = 2. Det minsta värdet funktionen antar i det givna intervallet är alltså 1 och det sker i en av intervallets ändpunkter. Håkan Strömberg 15 KTH Syd

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Mälardalens högskola Akademin för undervisning, kultur och kommunikation

Mälardalens högskola Akademin för undervisning, kultur och kommunikation Mälardalens ögskola Akademin för undervisning, kultur oc kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0..08 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Matematik 3c Kap 3 Kurvor, derivator och integraler

Matematik 3c Kap 3 Kurvor, derivator och integraler Matematik 3c Kap 3 Kurvor, derivator och integraler Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029 Matematik 5000, kurs 3b Grön lärobok Läraranvisning Textview Verksnummer: 40029 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

1.2 Polynomfunktionens tecken s.16-29

1.2 Polynomfunktionens tecken s.16-29 Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

n : R vara en reell funktion av n variabler och P 0 en punkt i funktionens definitionsområde D.

n : R vara en reell funktion av n variabler och P 0 en punkt i funktionens definitionsområde D. EXTREMVÄRDEN OCH EXTREMPUNKTER. LOKALA OCH GLOBALA EXTREMPUNKTER Definition 1. Låt f : R n : R vara en reell funktion av n variabler och P en punkt i funktionens ionsområde D. Vi säger att f har ett lokalt

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Bästa skottläge på en fotbollsplan längs långsidan

Bästa skottläge på en fotbollsplan längs långsidan Bästa skottläge på en fotbollsplan längs långsidan Frågeställningen lyder: Vad är det bästa skottläget? för en spelare som befinner sig på en rak linje på en fotbollsplan. Det är alltså en vinkel som söks,

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Ma3bc. Komvux, Lund. Prov kap

Ma3bc. Komvux, Lund. Prov kap Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf

Uppsala Universitet Matematiska Institutionen Bo Styf Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 0 p STS, X 00-0-7 Föreläsning, 7/0 00: Genomgånget på föreläsningarna - 5. Om kursen. Vi gick först igenom lite om kursen: Två redovisningsuppgifter

Läs mer

En samling funktionspussel för gymnasienivå

En samling funktionspussel för gymnasienivå En samling funktionspussel för gymnasienivå ü Pusslenas idé Det är lätt att snabbt rita många funktionsgrafer med en grafisk räknare, men hur är det med elevernas vana och förmåga att utläsa information

Läs mer

1. Utan miniräknare, skissa grafen (bestäm ev. extrempunkter och asymptoter) y = x2 1 x 2 + 1

1. Utan miniräknare, skissa grafen (bestäm ev. extrempunkter och asymptoter) y = x2 1 x 2 + 1 HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy april 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare. Betygsgränser: p. för Godkänd, p. för Väl Godkänd (p. från propedeutiska kursen kan tillgodoräknas)

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Kapitel 7. Kontinuitet. 7.1 Definitioner

Kapitel 7. Kontinuitet. 7.1 Definitioner Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.

Läs mer

3.1 Derivator och deriveringsregler

3.1 Derivator och deriveringsregler 3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,

Läs mer

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15.

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15. Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

Övningstenta 6. d b = 389. c d a b = 1319 b a

Övningstenta 6. d b = 389. c d a b = 1319 b a Övningstenta 6 Problem 1. Vilket är det största antalet olika element en symmetrisk matris A(n n kan ha? Problem. Bestäm de reella talen a,b,c och d då man vet att a b d c = 109 a c d b = 389 c d a b =

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Konsultarbete, Hitta maximal volym fo r en la da

Konsultarbete, Hitta maximal volym fo r en la da Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Lösningar och kommentarer till uppgifter i 3.2

Lösningar och kommentarer till uppgifter i 3.2 Lösningar och kommentarer till uppgifter i 3.2 Så har vi då nått fram till sista avsnittet före tentamen. Uppgifterna i detta avsnitt är ganska trevliga, därför att de ofta har en, åtminstone påhittad,

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer