y y 1 = k(x x 1 ) f(x) = 3 x

Storlek: px
Starta visningen från sidan:

Download "y y 1 = k(x x 1 ) f(x) = 3 x"

Transkript

1 Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för vare sig linjens lutning eller var den skär y-axeln. Dessutom finns enpunktformen: y y 1 = k(x x 1 ) där (x 1, y 1 ) är en känd punkt på linjen. Till sist har vi denna där a och b är konstanter vars betydelse vi återkommer till: y a + x b = 1 Alla dessa sätt att teckna en linjär funktion är förstås ekvivalenta. Ett bra tips är att föra över en given linjär funktion till den form som man är mest van vid. Under Lösta uppgifter tar vi upp några exempel. Derivatan av exponentialfunktionen. Vi minns att f(x) = 3 x är ett exempel på en exponentialfunktion. Kännetecknet är att x förekommer som exponent. Det är fritt fram för vilken positiv bas som helst. I exemplet har vi använt basen 3. Så här ser grafen ut: Figur 1: Gemensamt för alla exponentialfunktioner är att de växer snabbt då basen är > 1. Man talar om exponentiell tillväxt och menar då något som ökar snabbt. (Även Håkan Strömberg 1 KTH Syd

2 om detta inte alltid är helt korrekt. Jag menar att med basen 1.01, (1%), är ju tillväxten inte särskilt snabb). Vi förstår att denna funktion liksom andra vi studerat hittills har en tangent i varje punkt på kurvan. Med andra ord det borde finnas en derivata till f(x) = 3 x. Använder vi derivatans definition för att ta reda på den får vi f (x) = lim h 0 f(x + h) f(x) h = lim h 0 3 x+h 3 x h Vidare 3 x 3 h 3 x 3 x (3 h 1) lim = lim h 0 h h 0 h Eftersom 3 x inte är direkt inblandad när h 0, så kan vi skriva (om inte helt självklart) 3 x (3 h 1) lim h 0 h Sedan är det stopp! Det vi lärt oss om gränsvärden räcker inte för att knäcka detta. Vi ser att, när h = 0 får vi 0. Vi går till en bok för högre studier i matematik och 0 hittar (a h 1) lim h 0 h Använder vi detta resultat får vi = lna 3 x (3 h 1) lim = ln3 3 x h 0 h Det återstår nu endast ett problem. Vad står ln för? Vi kommer ihåg att lösningen till ekvationen 10 x = 23 skrivs x = lg23. Detta är en logaritmekvation där vi använder basen 10. Basen 10 är (åtminstone i Sverige) knuten till symbolen lg och det finns en knapp på dosan märkt log som motsvarar lg. Vilken bas man använder när man räknar med logaritmer är egentligen valfritt! Det känns naturligt att använda basen 10 eftersom vi använder oss av basen 10 när vi skriver våra tal. En annan bas är e. Talet e är en konstant precis som π och dessutom lika viktig i matematiken. Jag ska nu försöka förklara varifrån talet e kommer. Betrakta uttrycket ( lim ) x x x Det handlar alltså om ett gränsvärde där x Plottar vi funktionen ( f(x) = ) x x får vi följande graf, se 2. Vi kan gissa eller tro att kurvan närmar sig en gräns när x. Jag påstår att denna gräns är just talet e. Här har du talet e med de 200 första decimalerna: Håkan Strömberg 2 KTH Syd

3 Figur 2: Normalt brukar man komma ihåg att e På dosan finns en knapp märkt e x. Slår vi e 1 får man fram talet e med några av de decimaler som ges ovan. Vi tänker nu använda e som bas när vi räknar med logaritmer och konstaterar att: lg är för 10, vad ln är för e. Sök upp knappen ln på din räknare. Det finns ju oändligt många tal, varför har man fastnat för talet e? Vi återkommer till det. Först ska vi lösa några enkla ekvationer. Förhoppningsvis kommer du ihåg hur man löser till exempel denna ekvation: lgx = 2 10 lg x = 10 2 x = 100 Om den ekvationen är OK för dig är inte denna svårare: lnx = 2 e ln x = e 2 x = e 2 x Vi konstaterar at vår kattregel gäller även här (liksom för alla baser). så även för de andra logaritmlagarna. e ln = Detta är viktigt. Man kan nu skriva om vilket uttryck som helst a b till ett med basen e. Jag påstår att a b = e bln a För att förklara detta använder vi bara två logartimlagar: lna b = b lna Håkan Strömberg 3 KTH Syd

4 och så kattregeln. Alltså Så om vi har en funktion så kan vi skriva den som e bln a = e ln ab = a b f(x) = 3 x f(x) = e xln 3 eller hur? Bestämmer vi oss för att alltid skriva om en exponentialfunktion oavsett bas till en bas med e (vilket verkar enkelt) så får vi en fastare grund att stå på. Minns ni att vi för en halv timma sedan började med att försöka finna derivatan till f(x) = 3 x Vi kom fram till, genom derivatans definition och genom att låna ett gränsvärde från den högre matematiken, att f (x) = ln 3 3 x Man verkar inte kunna presentera derivatan till denna funktion utan att blanda in ln. Fakta: har derivatan f(x) = e x f (x) = e x Lätt att komma ihåg eller hur? Det är detta faktum som gör e så märkvärdigt. Att derivatans värde är lika med funktionens. där k är en konstant har derivatan f(x) = e kx f (x) = k e kx Lite svårare men fortfarande möjligt att memorera. Vad betyder detta? Ja att: f(x) = 3 x = e ln 3x = e xln 3 Vi deriverar sedan med hjälp av regeln ovan och får Detta uttryck kan ju skrivas om till f (x) = ln 3 e xln 3 f (x) = ln3 e xln 3 = ln 3 e ln 3x = ln 3 3 x Det var ju där vi började! Återstår att vänja sig vid att använda e och ln. Håkan Strömberg 4 KTH Syd

5 1 Översätt den linjära funktionen given på allmän form till k-form, där a och b är obestämda konstanter. Vi utgår alltså från ax + by + c = 0 och vill komma fram till y = k x + m. Det betyder att vi kommer att få k och m uttryckta i a och b. Vi ska alltså lösa ut y ur formeln ax + by + c = 0 by = ax c y = ax c b y = a b x + c b Detta betyder att k = a b och m = c b. Normalt lär man sig inte detta utantill, utan är beredd att räkna fram det varje gång det behövs. 2 Vi har den linjära funktionen y 5 + x 3 = 1 I vilka punkter skär denna linje koordinataxlarna? När funktionen skär x-axeln är y = 0. Vi sätter in det i funktionen och får ekvationen x 3 = 1 som har lösningen x = 3. Linjen skär alltså x-axeln i (3, 0) När funktionen skär y-axeln är x = 0. Vi sätter in det i funktionen och får ekvationen y = 1 som har lösningen y = 5. Linjen skär alltså y-axeln i punkten (0, 5). Det finns tydligen ett klart samband mellan de två nämnarna i funktionen och de punkter i vilka linjen skär axlarna. 3 Vilket resultat, ungefär, bör man få då man beräknar detta uttryck med dosans hjälp: ( ) Ungefär , ett tal ganska nära e, eller hur! Håkan Strömberg 5 KTH Syd

6 4 Lös ekvationen lnx + ln2 = ln10 lnx + ln2 = ln 10 ln x = ln 10 ln2 ln x = ln 10 2 ln x = ln 5 e ln x = e ln 5 x = 5 Förutom e ln = har vi använt ln ln = ln. Vi konstaterar att tekniken att lösa en ekvation med ln inte skiljer sig speciellt från det med lg. 5 Förenkla så långt möjligt 2 3 lnea lne 2 3 lnea lne a 2a a 3 = ln e 3 3 lne = 2a 3 a 3 = 2a 3 + a 3 = a Om lg10 = 1 så måste ju lne = 1. 6 Bestäm derivaten till f(x) = 10e x a 3 7 Bestäm derivatan till 8 Vilken funktion f (x) = 10e x f(x) = e 10x f (x) = 10e 10x a) f(x) = e 1 x b) f(x) = e 0 x c) f(x) = e 1 x hör ihop med vilken graf i figur 3 a) f(x) = e x b) f(x) = e x c) f(x) = e 0 När koefficienten är 0 är förstås funktionen konstant = 1. 9 Derivera funktionen f(x) = 4 x + 3 x Håkan Strömberg 6 KTH Syd

7 Figur 3: Vi skriver om funktionen enligt receptet ovan (även om man är ovan): Nu är det enkelt att derivera f(x) = e xln 4 + e xln 3 f (x) = ln4 e xln 4 + ln3 e xln 3 om man så vill kan man återställa baserna och få f (x) = ln 4 4 x + ln3 3 x Visserligen försvinner e, som vi är ovana vid just nu, men ln består. 10 Kurvan y = C e kx går genom punkten (0, 10). Lutningen i den punkten är 5. Bestäm talen C och k. Först och främst förstår vi att 10 = C e k 0 Vi har helt enkelt satt in x och y efter punkten (0, 10). Detta ger 10 = C e 0 eller C = 10. När vi har C = 10 kan vi skriva funktionen f(x) = 10 e kx Nu tar vi hand om den givna lutningen. För detta måste vi derivera funktionen ovan f (x) = k 10e kx Man har fått veta att f (0) = 3, eller hur (tänk efter). Detta ger f (0) = k 10e k 0 Eftersom f (0) = 5 får vi k 10e k 0 = 5 k 10e 0 = 5 k 10 = 5 k = 1 2 Till slut har vi kommit fram till funktionen: f(x) = 10e x 2 Håkan Strömberg 7 KTH Syd

8 1 Omforma den linjära funktionen till k-form. 3x + y 2 3 = 0 2 En linje skär koordinataxlarna i punkterna (0, 2) och (3, 0). Bestäm linjens ekvation (den linjära funktionen). 3 Lös ekvationen ln x 2 + lnx = 3 4 Man får reda på att f(2) = 3 e 2 och att f(3) = 3 e 3. Bestäm f(x). 5 Skriv om funktionen f(x) = x till funktionen g(x) med basen e och bestäm både f(10) och g(10) 6 Derivera funktionen 7 Bestäm f (2) då 8 Derivera f(x) = 3e 2x f(x) = 2e 3x + e x f(x) = (e x e x ) (e x + e x ) 1 Det är bara att räkna på, det vill säga att lösa ut y ur formeln 3x + y 2 3 = 0 y 2 = 3x + 3 y = 6x + 6 Lätt som en plätt, eller hur! Svar: y = 6x Utnyttjar vi kunskapen från Lösta problem nummer 2 får vi direkt y 2 + x 3 = 1 som kan hyfsas till y = 2 3 x 2 Håkan Strömberg 8 KTH Syd

9 3 Svar: x = e 4 Funktionen ln x 2 + lnx = 3 2 lnx + lnx = 3 3 lnx = 3 lnx = 1 e ln x = e 1 x = e f(x) = 3e x är förstås närliggande, men det finns faktiskt oändligt många funktioner som går genom dessa två punkter. Tänk efter. 5 Vi kan tyda denna funktion som en där man startar med 1000 kr och erhåller 4% ränta varje år. f(x) talar om hur mycket man har efter x år. 6 Omskriven till basen e får vi Vi får nu Omskrivningen verkar korrekt. 7 Först deriverar vi Vi kan nu bestämma f(10) = xln 1.04 g(x) = 1000 e g(10) 1480 f (x) = 3 2e 2x f (x) = 6e 3x + e x f (2) = 6e 6 + e 2 Matematiken stannar normalt här. Handlar det om fysik eller andra tillämpningar av matematiken kanske man svarar f (x) Vi måste börja med att utveckla parenteserna (tänk på konjugatregeln): (e x e x ) (e x + e x ) = e 2x e 2x Vi får då funktionen vars derivata är f(x) = e 2x e 2x f (x) = 2e 2x ( 2)e 2x = 2(e 2x + e 2x ) Håkan Strömberg 9 KTH Syd

10 Räkna bokens uppgifter: 2327, 2330, 2335, 2338, 2341, 2342, 2343, 2348, 2353, b) TB: f(x) = 3 e 4x ska deriveras. f (x) = 12 e 4x. Enkelt d) TB: Nu har vi funktionen f(x) = 6 e x/2. dess derivata är f (x) = 3 e x/2 och f (1/3) = 3 e 1/ TB: Tråkiga uppgifter hela vägen. Vad har du tänkt på när du plockat ut dem? Vi har f(x) = 10 e 7x som har derivatan f (x) = 70 e 7x. Vi ska nu visa att KTH: Javisst 2338 f (x) + 7f(x) = 0 70 e 7x e 7x = 0 det ser man ju på en gång. Har jag visat vad jag skulle och på rätt sätt TB: Nu ska jag derivera f(x) = (e x + e x ) 2. Jag vet inte riktigt. Ska man utveckla parenteserna, eller finns det något annat sätt? KTH: I och för sig finns det ett annat sätt, men det har du inte lärt dig ännu, så du får nog utveckla parenteserna TB: 2341 f(x) = (e x + e x ) 2 f(x) = (e x ) 2 + (e x ) 2 + 2e x e x f(x) = e 2x + e 2x + 2 f (x) = 2e 2x 2e 2x TB: C och k i f(x) = C e kx ska bestämmas. Till detta har vi två villkor f(0) = 2 och f (0) = 3. f(0) = C e k0 ger direkt C = 2. Om vi deriverar får vi f (x) = 2k e kx. Eftersom f (0) = 2k kan vi skriva 2k = 3 ger k = 3/2 och hela funktionen f(x) = 3 e 3x/ TB: Nu är jag helt borta igen. Vad ska jag göra? Jag inser att jag har funktionen f(x) = 4 x och att jag kan derivera den på något sätt. f(x) = e xln 4, så kan också man skriva funktionen. För mig blir det då enklare att finna f (x) = ln 4 e xln 4. Nu har jag både funktionen och derivatan Håkan Strömberg 10 KTH Syd

11 f (x) = k f(x) ln4 e xln 4 = k e xln 4 k = ln Är det klart? I så fall, vad har jag löst och varför? KTH: Kanske vill man påvisa att f(x)/f (x) är konstant TB: Det här med gränsvärden har jag inte fått riktigt grepp på. Hur skulle man skriva nu igen a h 1 lim = 1 h 0 h 2 När h 0 går både täljare och nämnare mot 0 och det är omöjligt att säga vad som händer. Jag har för mig att jag har hört att 0, kan vara precis vad 0 som helst. Här blir det tydligen 1/2 om man väljer a på ett bra sätt. KTH: Den är inte så lätt den här uppgiften. Vi vet att a h 1 h om vi har korrekt värde på a och små värden på h. Om vi fortsätter att förenkla uttrycket får vi e) a h h a ( h Om vi nu beräknar a med några små värden på h, till exempel h = 0.01 och h = så får vi a = respektive a = , så vi kan vara ganska säkra på att de tre första siffrorna hos a = Det var ju ett närmevärde det var frågan om. Det exakta svaret är a = e, men jag tänker inte berätta hur jag kom fram till det. Du får vänta några kurser till. TB: Att skriva om en potens a b, som ju har basen a och exponenten b till en annan bas till exempel e eller 10 görs genom eller på samma sätt för basen e Speciellt då för uppgiften ) 1 h a b = 10 lg ab = 10 blg a a b = e ln ab = e bln a 4 2t = 10 lg 42t = 10 2tlg 4 4 2t = e ln 42t = e 2tln 4 Håkan Strömberg 11 KTH Syd

12 KTH: Kan verka enkelt men det är viktigt att man kan detta, eftersom det dyker upp som små detaljer i större sammanhang. TB: Vad händer om man skriver om 10 x till basen 10 som det ju redan är. Jag, menar om man inte tänker på detta x = 10 lg 10x = 10 xlg 10 = 10 x Det blir rundgång eftersom lg10 = 1, på samma sätt som lne = 1 TB: Nu kommer ett sådant här obegripligt uttryck igen. oberoende av x Vad menar de? KTH: Att du ska få fram ett uttryck där x inte ingår. TB: Hur gör jag då? KTH: Vi säger att du inte har en aning. Vad gör du då? TB: Jag har f(x) = x, som jag omedelbart skriver om till basen e, bara för att jag då enklare kan derivera f(x). Jag får då f(x) = 5000 e xln 1.05 och dess derivata är f (x) = 5000 ln1.05 e xln 1.05 Enligt uppgiften ska jag nu beräkna en kvot f (x) f(x) = 5000 ln1.05 exln 1.05 = ln e xln 1.05 KTH: Ja Är det rätt? TB: Men varför. Vad var det för vits med detta? KTH: Att kvoten mellan derivatan och funktionen är konstant ln Vet du ett funktionsvärde f(a) så kan du omedelbart bestämma f (a) genom f(a) ln1.05. Det är väl bra! TB: Nej TB: Den här uppgiften är mer konkret och därmed tycker jag att den är bättre. Jag har funktionen f(x) = 2 x = e xln 2 och dess derivata f (x) = ln 2 e xln 2 Tangenten har k-värdet f (1) = ln2 e ln 2 = 2 ln2. Jag ska bestämma k och m i f(x) = kx + m. k = 2 ln2 och med hjälp av punkten (1, 2), som ligger på linjen får jag m genom 2 = (2 ln2) 1 + m, ger m = 2 2 ln2. Nu frågar man var tangenten skär y-axeln och det råkar vara samma värde som m. Svaret är (0, 2 2 ln2) Håkan Strömberg 12 KTH Syd

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4 Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

Grafen till funktionen z = x y.

Grafen till funktionen z = x y. Frågor och svar om ln x, e x och 1/x i anslutning till grafen finns på nästa sida och framåt. 1 (6) Grafen till funktionen z = x y. plot3d(x^y, x=-3..3, y=-1..2, axes=frame, grid=[25,25], title="z=x^y");

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7 Kontroll 13 Uppgift 1 Avståndet, r parsec, till en stjärna kan bestämmas med formeln M = m + 5 5 lgr där M =stjärnans absoluta ljusstyrka och m =stjärnans skenbara ljusstyrka. (1 parsec= 3.26 ljusår= 9.46

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

Mälardalens högskola Akademin för undervisning, kultur och kommunikation

Mälardalens högskola Akademin för undervisning, kultur och kommunikation Mälardalens ögskola Akademin för undervisning, kultur oc kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0..08 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1.

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Det är viktigt att du inför tentan kan alla standardgränsvärden/derivator/primitiver utan till så att dessa inte stoppar dig på vägen mot

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

M0038M Differentialkalkyl, Lekt 7, H15

M0038M Differentialkalkyl, Lekt 7, H15 M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03 Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Kvadratrötter. Lösningarna till andragradsekvationen ax 2 2x +1=0, där a betraktas som känd, ges som bekant av. 1. Pettersson: övn.

Kvadratrötter. Lösningarna till andragradsekvationen ax 2 2x +1=0, där a betraktas som känd, ges som bekant av. 1. Pettersson: övn. Kvadratrötter 1. Pettersson: övn. -40. En konstruktör beräknade att en bro kommer att klara den maximala lasten 500(198 a ) ton Han satte =1.4 och valde a så att maximala lasten blev 1000 ton. (a) Vilket

Läs mer

Träningsprov funktioner

Träningsprov funktioner Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr.

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr. Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Kapitel.1 101, 10 Eempel som löses i boken. 10 Löneökning per månad: 400 kr Förändring i årslön = 1 400 kr = 4800 kr OBS! Fel

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Matematik 2b 1 Uttryck och ekvationer

Matematik 2b 1 Uttryck och ekvationer Matematik 2b 1 Uttryck och ekvationer Repetera grunderna i ekvationslösning Lära dig parentesmultiplikation, kvadreringsreglerna och konjugatregeln Lära dig lösa fullständiga andragradsekvationer Få en

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

Ledtrå dår till lektionsuppgifter

Ledtrå dår till lektionsuppgifter Ledtrå dår till lektionsuppgifter Allmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt

Läs mer