4 Fler deriveringsregler

Storlek: px
Starta visningen från sidan:

Download "4 Fler deriveringsregler"

Transkript

1 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x + 8 Derivatan blir: f 0 (x) = 8x3 3x2 + 2 Men hur är det när exponenterna inte är heltal eller är negativa, som till exempel g(x) = x 3 + x2 Gäller den regel vi lärt oss för heltalsexponenter? h 0 (x) = n xn h(x) = xn Svaret är ja! Det betyder att 2 2 g 0 (x) = x 3 2x 3 = x 3 x För den som kan sina potenslagar är den avslutande omskrivningen inte konstig. 4.2 Lösta problem Övning 4. Bestäm derivatan till f(x) = x

2 2 Fler deriveringsregler Eftersom funktionen kan skrivas f(x) = x 2 Svar: Övning 4.2 Bestäm derivatan till f (x) = 2 x 2 = förstår vi att derivatan blir 2 x 2x 2 f(x) = x = 2 x med hjälp av derivatans definition Vi börjar med att ställa upp diffrenskvoten f(x + h) f(x) x + h x = = ( x + h x)( x + h + x) h h h( x + h + x) Vi har förlängt med konjugatet. Nu är det dags att låta h 0 x + h x h( x + h + x) = h h( x + h + x) = x + h + x lim h 0 x + h + x = = x + x 2 x Svar: 2 x Vi förstår att vi kan ta oss fram med hjälp av derivatans definition, Men att det ibland kan bli besvärligare än i tidigare uppgifter. Övning 4.3 Derivera funktionen f(x) = 3 x x 3 = Vi skriver först funktionen utan rottecken Nu är det dags att derivera f(x) = x x 3 4 Svar: f (x) = 2x x 4 4 = 2 3x 3 f (x) = x x + 3 4x 4 =

3 4.2 Lösta problem 3 Övning 4.4 Då man inte vill ha rötter i nämnaren kan man ofta förlänga bråket med lämpligt uttryck och vips finns det bara rötter i täljaren. Fixa bort roten i nämnaren 3 3 Vi förlänger med 3 och får 3 = 3 3 = 3 3 = Övning 4.5 Fixa bort rottecknen i nämnaren a + b a b Nu förlänger vi med konjugatet till uttrycket i nämnaren ( a + b)( a + b) ( a b)( a + b) ( a + b)( a + b) a b = a + 2 ab + b a b Övning 4.6 En tangent till funktionen f(x) = x har k-värdet k = 2. I vilken punkt tangerar tangenten funktionens kurva? Vi startar med att derivera funktionen f (x) = 2 x Genom att lösa ekvationen f (x) = 2 får vi svaret 2 x = 2 = x x = Då f() = är den eftersökta punkten (, ) Svar: (, ) Studera figuren:

4 4 Fler deriveringsregler Figur 4.: Övning 4.7 Bestäm h ( 2 ) då h(x) = x + x 2 Vi skriver om funktionen på en form som är enklare att derivera: Nu deriverar vi Nu kan vi bestämma h( 2 ) Svar: h ( 2 ) = 20 h(x) = x + x 2 h (x) = x 2 2x 3 = x 2 2 x 3 h ( 2 ) = = = = Figur 4.2: Övning 4.8 Här ser du två grafer, i figurerna 4.2 och 4.3. Den ena visar derivatan av den andra. Vilken är vilken? Den övre är derivata till den undre. Hur kan man se det? De punkter på funktionens kurva som har tangenter som har k = 0 innebär att f (x) för dessa punkter ska vara 0, eller hur?

5 4.2 Lösta problem Figur 4.3: Övning 4.9 Bestäm grafiskt (se figur 4.4), det vill säga ungefär, följande värden f(0) f (2.) f(2) f ( 0.8) f(0) = 6 f (2.) = 0 f(2) = 4 f ( 0.8) = 0 Övning 4.0 Åter till figur 4.4. I vilka punkter A, B, C är f (x) > 0 f (x) < 0 f (x) = 0 A : f (x) > 0 C : f (x) < 0 B : f (x) = 0 Övning 4. Bestäm derivatan till f(x) = x 4 + x2 Vi skriver om funktionen till Nu är det enkelt att derivera f(x) = x 4 + x 2 f (x) = 4x 5 + 2x Tycker man inte om negativa exponenter kan man skriva om derivatan till f (x) = 2x 4 x 5

6 6 Fler deriveringsregler Figur 4.4: Uppgift 9 och 0 Övning 4.2 Beräkna a) f(0) b) f(x) = 0 c) f (0), d) f (x) = 0 till funktionen f(x) = x 2 x 6 Enklast att beräkna är f(0) f(0) = = 6 För att bestämma f(x) = 0 måste vi lösa en ekvation, här en andragradsekvation: x 2 x 6 = 0 För att bestämma f (0) måste vi derivera f(x): x = 2 ± x = 2 ± 5 2 x = 3 x 2 = 2 f (x) = 2x Detta ger f (0) = 2 0 =

7 4.2 Lösta problem 7 Så över till sista delen f (x) = 0, som leder till den enkla ekvationen Svar: a) 6 b) x = 3, x 2 = 2 c) d) x = 2 Övning 4.3 Beräkna derivatan till 2x = 0 x = 2 f(x) = 2 x x Först skriver vi om funktionen Nu är det lämpligt att derivera x 2 2 x 3 2 f(x) = 2x 2 x 2 f (x) = 2x 2 2 Förklara för dig själv, sista steget, att x 3 = x x x Övning 4.4 Vilket är störst f () eller f (2) då = = x + 2 x 3 = x + 2x x = f(x) = 3 x Vi kan inte besvara denna fråga utan att derivera som är f (x) = x f(x) = x 3 = 3x 2 3 med eller utan hjälp av dosan ser vi att f () > f (2) = 3 3 x 2 Övning 4.5 I f(x) = x 2 + x II g(x) = x 2 III h(x) = x 2 Para ihop funktionerna med rätt kurva.

8 8 Fler deriveringsregler Figur 4.5: Svar: I) B, II) A, III) C Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för vare sig linjens lutning eller var den skär y-axeln. Dessutom finns enpunktformen: y y = k(x x ) där (x, y ) är en känd punkt på linjen. Till sist har vi denna där a och b är konstanter vars betydelse vi återkommer till: y a + x b = Alla dessa sätt att teckna en linjär funktion är förstås ekvivalenta. Ett bra tips är att föra över en given linjär funktion till den form som man är mest van vid. Under Lösta uppgifter tar vi upp några exempel. 4.3 Mer Dagens teori Logartimer Vi har i uppgift att bestämma produkten Med hjälp av en logaritmtabell kan vi slå upp talet 423. Vi hittar sifferföljden På samma sätt slår vi upp 75 och hittar De två funna talen ska nu användas för bestämma x i 0 x = 423. Vi förstår att x = 2, som ger 0 2 = 00, är för litet och x = 3 som ger 0 3 = 000 är för stort. Vi förstår att 2 < x < 3. Genom att använda sifferföljden vi fick från tabellen kan vi skriva Detta tal är då nära 423. På samma sätt får vi att Vi har alltså med tabellens hjälp fått När vi har en gemensam bas kan vi, som bekant från potenslagarna, addera exponenterna och får = =

9 4.3 Mer Dagens teori 9 Nu går vi in i tabellen igen och försöker, bakifrån, leta upp sifferföljden 509 inuti tabellen. Tyvärr finns inte detta tal i tabellen. Närmast vi kan komma är 50. För sifferföljden 50 får vi en ny sifferföljd 37. Eftersom heltalssiffran i är 5, ska vi har 6 heltalssiffror i resultatet och får vi lägga till 3 nollor till resultatet. Vi får produkten När vi beräknar med något av våra moderna elektronikverktyg får vi Vårt resultat är alltså inte speciellt imponerande men det visar hur man använde logaritmer från 600-talet och framåt tills datorer och miniräknare nästan 400 år senare kunde åstadkomma betydligt bättre resultat på betydligt kortare tid. Ett exempel till. Beräkna Vi får t log t I tabellen hittar vi närmast nu som ger resultatet att jämföra med det korrekta Med den tabell jag använt kommer man att få 3 korrekta värdesiffror. Trots att användningen av logaritmer på detta sätt sedan länge är utdött lever begreppet logaritmer vidare inom matematiken. Vi har ekvationen 0 x = 2345 som vi vill lösa. Vilket tal ska jag upphöja 0 till för att få resultatet 2345? Man skriver direkt x = lg För att få ett numerisk värde måste man använda en miniräknare (mycket bättre än tabellen). Vi får x = lg Du bestämmer hur många decimaler du ska ta med men är redan det tillräckligt bra (kanske). På dosan använder du LOG. Vi har av detta lära oss att lg a b = lg a + lg b. Detta är första logaritmlagen. Här har vi dem alla Logaritmlagarna I) lg a b = lg a + lg b II) III) lg a b = lg a lg b lg a b = b lg a IV) lg a = lg a Du kommer väl ihåg att a b kallas potens, att a kallas bas och b exponent. När vi talar om lg gäller hela tiden basen 0. Ibland skriver man log 0 istället för lg. Man kan tänka sig vilket positivt tal som helst som bas. Följande tre baser är vanligast 0 lg log 0 e ln log e 2 log 2 De fyra lagarna ovan gäller oavsett bas. Här några uppgifter för huvudräkning

10 0 Fler deriveringsregler Övning 4.6 a) lg 000 b) lg 0 c) lg d) lg 0.00 e) log 5 25 f) log 3 8 g) log h) lg( 0) a) 3 b) c) 0 d) 3 e) 2 f) 4 g) 8 h) ej definierat Övning 4.7 Lös ekvationerna a) lg x = lg 3 + lg 6 b) lg 0 = lg 2 + lg x c) lg 00 = lg x 2 d) log 3 x = log 3 27 log 3 3 e) log 2 x 3 = log 2 64 f) x = log log lg 000 a) x = 8 b) x = 5 c) x = 0 d) x = 2 e) x = 4 f) x = 9 På hemsidan finns ett stort antal logaritmekvationer Derivatan av exponentialfunktionen. Vi minns att f(x) = 3 x är ett exempel på en exponentialfunktion. Kännetecknet är att x förekommer som exponent. Det är fritt fram för vilken positiv bas som helst. I exemplet har vi använt basen 3. Så här ser grafen ut: Figur 4.6: Gemensamt för alla exponentialfunktioner är att de växer snabbt då basen är >. Man talar om exponentiell tillväxt och menar då något som ökar snabbt. (Även om detta inte alltid är helt korrekt. Jag menar att med basen.0, (%), är ju tillväxten inte särskilt snabb). Vi förstår att denna funktion liksom andra vi studerat hittills har en tangent i varje punkt på kurvan. Med andra ord det borde finnas en derivata till f(x) = 3 x. Använder vi derivatans definition för att ta reda på den får vi f f(x + h) f(x) 3 x+h 3 x (x) = lim = lim h 0 h h 0 h

11 4.3 Mer Dagens teori Vidare 3 x 3 h 3 x lim h 0 h = lim h 0 3 x (3 h ) h Eftersom 3 x inte är direkt inblandad när h 0, så kan vi skriva (om inte helt självklart) 3 x lim h 0 (3 h ) h Sedan är det stopp! Det vi lärt oss om gränsvärden räcker inte för att knäcka detta. Vi ser att, när h = 0 får vi 0 0. Vi går till en bok för högre studier i matematik och hittar Använder vi detta resultat får vi (a h ) lim = ln a h 0 h 3 x (3 h ) lim = ln 3 3 x h 0 h Det återstår nu endast ett problem. Vad står ln för? Vi kommer ihåg att lösningen till ekvationen 0 x = 23 skrivs x = lg 23. Detta är en logaritmekvation där vi använder basen 0. Basen 0 är (åtminstone i Sverige) knuten till symbolen lg och det finns en knapp på dosan märkt log som motsvarar lg. Vilken bas man använder när man räknar med logaritmer är egentligen valfritt! Det känns naturligt att använda basen 0 eftersom vi använder oss av basen 0 när vi skriver våra tal. En annan bas är e. Talet e är en konstant precis som π och dessutom lika viktig i matematiken. Jag ska nu försöka förklara varifrån talet e kommer. Betrakta uttrycket ( lim + ) x x x Det handlar alltså om ett gränsvärde där x Plottar vi funktionen ( f(x) = + ) x x får vi följande graf, se Figur 4.7: Vi kan gissa eller tro att kurvan närmar sig en gräns när x. Jag påstår att denna gräns är just talet e. Här har du talet e med de 200 första decimalerna:

12 2 Fler deriveringsregler Normalt brukar man komma ihåg att e På dosan finns en knapp märkt e x. Slår vi e får man fram talet e med några av de decimaler som ges ovan. Vi tänker nu använda e som bas när vi räknar med logaritmer och konstaterar att: lg är för 0, vad ln är för e. Sök upp knappen ln på din räknare. Det finns ju oändligt många tal, varför har man fastnat för talet e? Vi återkommer till det. Först ska vi lösa några enkla ekvationer. Förhoppningsvis kommer du ihåg hur man löser till exempel denna ekvation: lg x = 2 0 lg x = 0 2 x = 00 Om den ekvationen är OK för dig är inte denna svårare: ln x = 2 e ln x = e 2 x = e 2 x Vi konstaterar at vår kattregel gäller även här (liksom för alla baser). så även för de andra logaritmlagarna. e ln = Detta är viktigt. Man kan nu skriva om vilket uttryck som helst a b till ett med basen e. Jag påstår att a b = e b ln a För att förklara detta använder vi bara två logartimlagar: och så kattregeln. Alltså Så om vi har en funktion så kan vi skriva den som ln a b = b ln a e b ln a = e ln ab = a b f(x) = 3 x f(x) = e x ln 3 eller hur? Bestämmer vi oss för att alltid skriva om en exponentialfunktion oavsett bas till en bas med e (vilket verkar enkelt) så får vi en fastare grund att stå på. Minns ni att vi för en halv timma sedan började med att försöka finna derivatan till f(x) = 3 x

13 4.3 Mer Dagens teori 3 Vi kom fram till, genom derivatans definition och genom att låna ett gränsvärde från den högre matematiken, att f (x) = ln 3 3 x Man verkar inte kunna presentera derivatan till denna funktion utan att blanda in ln. Fakta: har derivatan f(x) = e x f (x) = e x Lätt att komma ihåg eller hur? Det är detta faktum som gör e så märkvärdigt. Att derivatans värde är lika med funktionens. där k är en konstant har derivatan f(x) = e kx f (x) = k e kx Lite svårare men fortfarande möjligt att memorera. Vad betyder detta? Ja att: f(x) = 3 x = e ln 3x = e x ln 3 Vi deriverar sedan med hjälp av regeln ovan och får Detta uttryck kan ju skrivas om till f (x) = ln 3 e x ln 3 f (x) = ln 3 e x ln 3 = ln 3 e ln 3x = ln 3 3 x Det var ju där vi började! Återstår att vänja sig vid att använda e och ln.

14 4 Fler deriveringsregler 4.4 Lösta problem Övning 4.8 Översätt den linjära funktionen given på allmän form till k-form, där a och b är obestämda konstanter. Vi utgår alltså från ax + by + c = 0 och vill komma fram till y = k x + m. Det betyder att vi kommer att få k och m uttryckta i a och b. Vi ska alltså lösa ut y ur formeln ax + by + c = 0 by = ax c y = ax c b y = a b x + c b Detta betyder att k = a b och m = c b. Normalt lär man sig inte detta utantill, utan är beredd att räkna fram det varje gång det behövs. Övning 4.9 Vi har den linjära funktionen y 5 + x 3 = I vilka punkter skär denna linje koordinataxlarna? När funktionen skär x-axeln är y = 0. Vi sätter in det i funktionen och får ekvationen x 3 = som har lösningen x = 3. Linjen skär alltså x-axeln i (3, 0) När funktionen skär y-axeln är x = 0. Vi sätter in det i funktionen och får ekvationen y = som har lösningen y = 5. Linjen skär alltså y-axeln i punkten (0, 5). Det finns tydligen ett klart samband mellan de två nämnarna i funktionen och de punkter i vilka linjen skär axlarna. Övning 4.20 Vilket resultat, ungefär, bör man få då man beräknar detta uttryck med dosans hjälp: ( + ) Ungefär , ett tal ganska nära e, eller hur! Övning 4.2 Lös ekvationen ln x + ln 2 = ln 0

15 4.4 Lösta problem 5 ln x + ln 2 = ln 0 ln x = ln 0 ln 2 ln x = ln 0 2 ln x = ln 5 e ln x = e ln 5 x = 5 Förutom e ln = har vi använt ln ln = ln. Vi konstaterar att tekniken att lösa en ekvation med ln inte skiljer sig speciellt från det med lg. Övning 4.22 Förenkla så långt möjligt 2 3 ln ea ln e a ln ea ln e a 2a a 3 = ln e 3 3 ln e = 2a 3 a 3 = 2a 3 + a 3 = a Om lg 0 = så måste ju ln e =. Övning 4.23 Bestäm derivaten till f(x) = 0e x f (x) = 0e x Övning 4.24 Bestäm derivatan till f(x) = e 0x f (x) = 0e 0x Övning 4.25 Vilken funktion a) f(x) = e x b) f(x) = e 0 x c) f(x) = e x hör ihop med vilken graf i figur 4.8

16 6 Fler deriveringsregler Figur 4.8: a) f(x) = e x b) f(x) = e x c) f(x) = e 0 När koefficienten är 0 är förstås funktionen konstant =. Övning 4.26 Derivera funktionen f(x) = 4 x + 3 x Vi skriver om funktionen enligt receptet ovan (även om man är ovan): Nu är det enkelt att derivera f(x) = e x ln 4 + e x ln 3 f (x) = ln 4 e x ln 4 + ln 3 e x ln 3 om man så vill kan man återställa baserna och få f (x) = ln 4 4 x + ln 3 3 x Visserligen försvinner e, som vi är ovana vid just nu, men ln består. Övning 4.27 Kurvan y = C e kx går genom punkten (0, 0). Lutningen i den punkten är 5. Bestäm talen C och k. Först och främst förstår vi att 0 = C e k 0 Vi har helt enkelt satt in x och y efter punkten (0, 0). Detta ger 0 = C e 0 eller C = 0. När vi har C = 0 kan vi skriva funktionen f(x) = 0 e kx Nu tar vi hand om den givna lutningen. För detta måste vi derivera funktionen ovan f (x) = k 0e kx

17 4.4 Lösta problem 7 Man har fått veta att f (0) = 3, eller hur (tänk efter). Detta ger Eftersom f (0) = 5 får vi Till slut har vi kommit fram till funktionen: f (0) = k 0e k 0 k 0e k 0 = 5 k 0e 0 = 5 k 0 = 5 k = 2 f(x) = 0e x 2 Övning 4.28 Omforma den linjära funktionen 3x + y 2 3 = 0 till k-form. Det är bara att räkna på, det vill säga att lösa ut y ur formeln 3x + y 2 3 = 0 y = 3x y = 6x + 6 Lätt som en plätt, eller hur! Svar: y = 6x + 6 Övning 4.29 En linje skär koordinataxlarna i punkterna (0, 2) och (3, 0). Bestäm linjens ekvation (den linjära funktionen). Utnyttjar vi kunskapen från Lösta problem nummer 2 får vi direkt som kan hyfsas till y 2 + x 3 = y = 2 3 x 2 Övning 4.30 Lös ekvationen ln x 2 + ln x = 3 Svar: x = e ln x 2 + ln x = 3 2 ln x + ln x = 3 3 ln x = 3 ln x = e ln x = e x = e

18 8 Fler deriveringsregler Övning 4.3 Man får reda på att f(2) = 3 e 2 och att f(3) = 3 e 3. Bestäm f(x). Funktionen f(x) = 3e x är förstås närliggande, men det finns faktiskt oändligt många funktioner som går genom dessa två punkter. Tänk efter. Övning 4.32 Skriv om funktionen f(x) = x till funktionen g(x) med basen e och bestäm både f(0) och g(0) Vi kan tyda denna funktion som en där man startar med 000 kr och erhåller 4% ränta varje år. f(x) talar om hur mycket man har efter x år. f(0) = Omskriven till basen e får vi Vi får nu Omskrivningen verkar korrekt. x ln.04 g(x) = 000 e g(0) 480 Övning 4.33 Derivera funktionen f(x) = 3e 2x f (x) = 3 2e 2x Övning 4.34 Bestäm f (2) då f(x) = 2e 3x + e x Först deriverar vi Vi kan nu bestämma f (x) = 6e 3x + e x f (2) = 6e 6 + e 2 Matematiken stannar normalt här. Handlar det om fysik eller andra tillämpningar av matematiken kanske man svarar f (x) 2428

19 4.4 Lösta problem 9 Övning 4.35 Derivera f(x) = ( e x e x) ( e x + e x) Vi måste börja med att utveckla parenteserna (tänk på konjugatregeln): ( e x e x) ( e x + e x) = e 2x e 2x Vi får då funktionen vars derivata är f(x) = e 2x e 2x f (x) = 2e 2x ( 2)e 2x = 2(e 2x + e 2x )

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1 Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition 3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

5 Blandade problem. b(t) = t. b t ln b(t) = e

5 Blandade problem. b(t) = t. b t ln b(t) = e 5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018 Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1 Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x Derivator.1 Dagens Teori Figur.1: I figuren ser vi grafen till funktionen f(x) = x 3 + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7 3 finns en tangent som tangerar kurvan i (, 10 3

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

8 + h. lim 8 + h = 8

8 + h. lim 8 + h = 8 Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar.

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. 1 Bestäm med jälp av derivatans definition f () då f(x) = x + x + Funktionen f(x) = x 4x + 8 ar en minpunkt. Bestäm

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Planering för kurs C i Matematik

Planering för kurs C i Matematik Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.

En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002 RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

9 Skissa grafer. 9.1 Dagens Teori

9 Skissa grafer. 9.1 Dagens Teori 9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r. Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4 Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr

Läs mer

Studieanvisning till Matematik 3000 kurs C/Komvux

Studieanvisning till Matematik 3000 kurs C/Komvux Studieanvisning till Matematik 3000 kurs C/Komvu ISBN 91-27-51027-1 Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs C/Komvu av Lars-Eric Björk,

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

M0038M Differentialkalkyl, Lekt 7, H15

M0038M Differentialkalkyl, Lekt 7, H15 M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

MVE465. Innehållsförteckning

MVE465. Innehållsförteckning Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Studieplanering till Kurs 2b Grön lärobok

Studieplanering till Kurs 2b Grön lärobok Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

DOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h

DOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h DOP-matematik Copyrigt Tord Persson Gränsvärden Uppgift nr 1 f(x) x². Gör denna värdetabell komplett genom att i tur oc ordning ersätta x i funktionen med de olika talen / uttrycken i tabellen. Första

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1: Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

10 Derivator och tillämpningar 1

10 Derivator och tillämpningar 1 10 Derivator och tillämpningar 1 10.1 Dagens Teori Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Övning 10.1

Läs mer

Grafen till funktionen z = x y.

Grafen till funktionen z = x y. Frågor och svar om ln x, e x och 1/x i anslutning till grafen finns på nästa sida och framåt. 1 (6) Grafen till funktionen z = x y. plot3d(x^y, x=-3..3, y=-1..2, axes=frame, grid=[25,25], title="z=x^y");

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer