Läsanvisningar till kapitel 4 i Naturlig matematik

Storlek: px
Starta visningen från sidan:

Download "Läsanvisningar till kapitel 4 i Naturlig matematik"

Transkript

1 Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här kommer de att presenteras för dig under namn som polynomfunktioner, logaritmfunktioner, exponentialfunktioner, trigonometriska funktioner och arcusfunktioner. Vad som är stort och viktigt med dessa funktioner är att de har jämna och fina grafer. I senare kapitel kommer du att upptäcka att skönheten hos grafen hänger ihop med om funktionen är deriverbar och kontinuerlig. Fundera: FUN 4.1 (Är dessa funktioners grafer sköna?) Avsnitt 4.2 till mitten på sid 111 Detta är ett långt avsnitt, men vi kan nog göra det lite enklare för dig. Vi gissar att du har läst någon algebrakurs före denna kurs och då har du säkert mött polynom. Då betraktades de ju inte som funktioner. Det var mer intressant om ekvationer med polynom hade lösningar. Motsvarande polynomfunktion sägs då ha nollställen, dvs. skärningar med x-axeln. Texten på sid 105 efter exempel 4.2 behöver du inte gå så djupt in på. Nöj dig med att det finns två allmänna sätt att skriva en andra gradens polynomfunktion. Av dessa är y = k(x a) 2 + b det viktigaste i detta avsnitt. Exemplen visar betydelsen genom grafernas placering i koordinatsystemet. Grafen till en andra gradens polynomfunktion är en parabel, som också brukar kallas kastparabel eftersom ett föremål som kastas i rummet följer en parabelbåge. Se även övning 4.9 sid 137. Sammanfattning av vissa egenskaper för parabeln y = k(x a) 2 + b: 1. Om k > 0 har parabeln ett minsta värde, dvs en punkt där kurvan går från avtagande till växande. Se exemplen 4.3, 4.5 och Om k < 0 har parabeln ett största värde, dvs en punkt där kurvan går från växande till avtagande. Se exemplen 4.4 och Ju större positivt eller negativt värde på k ju spetsigare blir parabeln. Se exempel Parabelns största (eller minsta) värde antas i punkten (a, b). Denna punkt kallas parabelns vertex. Se exempel 4.7. I exempel 4.7 sker en s.k. kvadratkomplettering av andragradspolynomet för att finna konstanterna k, a och b. Du behöver inte bry dig om detaljerna i denna, om du inte vill. Fig 4.6 är bra. P.g.a. parabelns utseende kan vi inse att den kan skära x-axeln i som mest två punkter. 1

2 Spara på bilden av grafen y = x 3 i fig 4.7. Den kan vara bra att ha. I fig 4.8 sid 111 ser du en typisk tredjegradskurva, alltså grafen till en tredje gradens polynomfunktion. Den har en max- och en minpunkt. Vi kan se att för ökande x- värden så växer funktionen fram till max sen avtar den till min för att sedan växa igen. Från mitten på sid 111 Genom att lösa... är avsnittet kursivt. Vi förutsätter emellertid att du känner till Faktorsatsen från tidigare kurs. En liten snabb repetition: Faktorsatsen medför att om vi känner nollställena a, b, c,... till ett polynom så vet vi att polynomet är jämnt delbart med faktorerna (x a), (x b), (x c),... Exempelvis gäller att 2x x 3 44x + 30 = 2(x + 3)(x 1) 2 (x + 5) eftersom polynomet har nollställena x = 3, x = 1, x = 5 och x = 1 är ett dubbelt nollställe. Uppgift: Ge ett exempel på en tredjegradsfunktion, vars graf först avtar till ett min, sedan växer till ett max, för att sedan avta igen. Uppgift: Kan du rita grafen till en tredjegradsfunktion som bara har två olika nollställen? Uppgift: Dela upp andragradspolynomet 4x 2x 2 6 i faktorer med hjälp av faktorsatsen. Räkna: TP (sid 114) 1, 2a Fundera: FUN 4.2 (tänk lite grand på vad som händer om det är ett minustecken eller plustecken framför x 4 -termen) Avsnitt 4.3 Hoppas du kommer ihåg potenslagarna. Annars finns de på sid 36. För en allmän potens måste basen vara positiv, medan exponenten kan anta vilket reellt tal som helst. Om exponenten är oberoende variabel och basen är konstant så bildar vi en exponentialfunktion y = a x. Den viktigaste basen är e. På sid 116 ser du varför e är vald som den är. Men egentligen beror det på derivata. Derivatan av funktionen f(x) = e x är nämligen detsamma f (x) = e x. Men det är faktiskt samma sak som den geometriska förklaringen på sid 116. Om detta kan vi lära mer i kap 6. En liten parentes: Det är ju så att t.ex. y = e 4x också är en exponentialfunktion. Enligt en av potenslagarna är ju e 4x = (e 4 ) x så då är ju e 4 bas och x exponent. Räkna: TP (sid 116) 4 Fundera: FUN 4.3 (potensfunktionen har du redan stött på för vissa bestämda exponenter, vilka? Observera också att nu är exponenten konstant medan basen är den oberoende variabeln.) 2

3 Avsnitt 4.4 Logaritmlagarna måste du också kunna. De finns för påseende på sid 38. Kom ihåg det viktigaste som gäller logaritmer, nämligen att LOGARITMEN ÄR EN EXPO- NENT. Den mest använda logaritmen är den naturliga, dvs. ln x. Detta är logaritmen med basen e. ln kommer av latinets logarithmus naturalis som just betyder naturliga logaritmen. Viktigt är också att logaritmfunktionen är invers till exponentialfunktionen. Det gäller ju att y = ln x är detsamma som (ekvivalent med) x = e y. Det ser vi i fig Ur dessa likheter får vi den lysande likheten e ln x = x Detta kan formuleras i ord som att om vi vill skriva ett tal x som ett exponentialuttryck med basen e så blir exponenten ln x. Lägg märke till att x måste vara positivt. Exempel: 4 = e ln 4 Ex 4.14 kan du göra och ex 4.15 behöver du bara läsa igenom. Räkna: TP (sid 120) 5, 6 Avsnitt 4.5 Sinus, cosinus och tangens för en vinkel i en rätvinklig triangel bör du ha stött på tidigare. Om du har glömt får du lära dig på nytt i rutan på sid 121. Det är lämpligt att definiera de trigonometriska funktionerna för vinklar v som också ligger utanför området 0 v 90. För att detta ska passa bra ihop med teorin om derivator så inför vi vi en ny vinkelenhet radian. Storleken på vinkeln kan då uttryckas som en längd av en cirkelbåge, där cirkeln har radien 1 (dvs. en enhetscirkel). Genom att placera in cirkeln i ett koordinatsystem kan de trigonometriska funktionerna definieras som i rutan på sid 122. Observera att sin v = y betyder att sinusvärdet är detsamma som y-koordinaten i radiens skärning med enhetscirkeln. Fig visar detta bra. Formlerna i sats 4.1 kan du lära dig utantill om du vill, men det är mycket bättre att bara förstå dem och kunna plocka fram dem vid behov direkt ur enhetscirkeln. Så det är ännu bättre att du sparar fig 4.16 i huvudet. Trigonometriska ettan (formel (9) i sats 4.1) (sin v) 2 +(cos v) 2 = 1 kan du emellertid lagra någonstans. Jag skrev den nu medvetet annorlunda än i boken men sin 2 v är bara ett annat skrivsätt än (sin v) 2, men betyder samma sak. Period är ett viktigt begrepp. Perioden för sinus eller cosinus för en vinkel är 2π, dvs. ett varv på enhetscirkeln. Det betyder att vilken vinkel du än har (t.ex. 33 radianer) så får du samma sinus och cosinusvärden om du snurrar hela varv (ett varv är 2π) fram eller baklänges längs enhetscirkeln. I vårt exempel får vi då sin 33 = sin(33 + n 2π) och cos 33 = cos(33 + n 2π) Tangens för en vinkel får alltid samma värde efter att bara ha snurrat halva varv. 3

4 Alltså är perioden för tangens lika med π. För vårt exempel blir det då tan 33 = tan(33 + n π) I alla dessa fall kan då n anta både positiva (positiv riktning på enhetscirkeln) och negativa (negativ riktning) heltalsvärden. Rutan längst ner på sid 124 ska du försöka komma ihåg. Exempel 4.17 är en lek med formler eller egentligen bättre: en utmärkt användning av enhetscirkeln. Sinus-, cosinus- och tangensfunktionernas grafer är bra att komma ihåg ungefär hur de ser ut. Se fig 4.17 och I exemplen löser vi trigonometriska ekvationer. Här är rutan på sid 124 viktig för att få exakta svar. Lägg märke till sista raden till exempel Där står att y = sin 2x har perioden π med avseende på x. Med avseende på hela vinkeln 2x har sinus givetvis, som tidigare, perioden 2π, men när vinkeln dubblas blir perioden (avseende x) hälften. Studera lösningen för exemplet och lägg speciellt märke till att perioden 2π delas med 2, så att perioden med avseende på x istället blir π. I exempel 4.24 används liknande idéer vad gäller grafer. Räkna: TP (sid 130) 7, 8, 9 Fundera: FUN 4.5 (vilken period har tan 3x med avseende på x? Tangens har ju perioden π när det gäller hela vinkeln 3x.) Avsnitt 4.6 (Bara exemplen 4.25 och 4.29) I appendix A längst bak i boken (sid 477) finns en massa trigonometriska formler. Det är inte tänkt att du ska lära dig alla dessa, men det är bra att ha dem samlade på ett ställe. Några ska du emellertid absolut kunna. De är A1, A3, A4, A11, A16 samt formlerna för sinus- och cosinus för dubbla vinkeln A12 och A13. Dessa formler har du stor nytta av i fortsättningen. En liten detalj: En av formlerna för cosinus dubbla vinkeln är cos 2x = 1 2 sin 2 x Observera att det handlar om dubbla vinkeln. Formeln kan då t.ex. användas för vinkeln 4x (som är dubbelt så stor som 2x): cos 4x = 1 2 sin 2 2x och detta skulle man ju kunna förenkla ytterligare genom att använda formeln för sinus dubbla vinkeln: cos 4x = 1 2 sin 2 2x = 1 2 (2 sin x cos x) 2 = 1 8 sin 2 x cos 2 x Vi kan också gå baklänges i formeln, som t.ex. cos 2x = 2 cos 2 x 1 4

5 Om vi säger att 2x = π 4 (45 ) så kan vi få reda på vad cosinus hälften av π, dvs. 4 cos π (= cos 22, 8 5 ), är exakt: cos π 4 = 2 cos2 π 8 1 eller cos π 8 = = Hur fick vi den sista likheten? Försök visa! I avsnittet behöver du bara gå igenom exempel 4.25 och exempel Räkna: TP (sid 133) 11a Fundering: FUN 4.6 Avsnitt 4.7 Detta avsnitt handlar om inverser till trigonometriska funktioner. Detta kan kanske verka märkligt eftersom ingen av dessa funktioner är inverterbara. Men genom att välja en mindre definitionsmängd kan vi begränsa de trigonometriska funktionerna till strängt monotona bitar. I fig 4.20, 4.22 och 4.24 finner vi vilka delar av graferna för sinus, cosinus och tangens som kan väljas. Vi sammanfattar arcusfunktionerna: y = arcsin x har definitionsmängd 1 x 1 och värdemängd π 2 x π 2. Graf i fig y = arccos x har definitionsmängd 1 x 1 och värdemängd 0 x π. Graf i fig y = arctan x har definitionsmängd R (alla reella tal) och värdemängd π 2 < x < π 2. Graf i fig Exemplen 4.35 och 4.36 är bra att förstå. Det gäller att värdet på arusfunktionerna alltid måste hamna inne i värdemängden. För att klara det måste man ibland trixa med trigonometriska formler. Räkna: TP (sid 136) 12, 13 Räkna hela kapitlet: ÖV 4.1, 4.2ab, 4.3a, 4.4a, 4.9, 4.11ab, 4.17, 4.18abe, 4.19a, 4.31, 4.33,

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Ledtrå dår till lektionsuppgifter

Ledtrå dår till lektionsuppgifter Ledtrå dår till lektionsuppgifter Allmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt

Läs mer

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det

Läs mer

Geometri och Trigonometri

Geometri och Trigonometri Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Avsnitt 5, introduktion.

Avsnitt 5, introduktion. KTHs Sommarmatematik Introduktion 5:1 5:1 Avsnitt 5, introduktion. Radianer Vinkelmåttet radianer är i matematiska sammanhang bättre än grader, särskilt när man sysslar med de trigonometriska funktionerna

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

MATMAT01b (Matematik 1b)

MATMAT01b (Matematik 1b) Sida 1 av 6 MATMAT01b (Matematik 1b) ATT KUNNA TILL PROV MATMAT01b1 - Öka, respektive minska temperaturer - Skriva tal skrivna med text med siffror, Ex två tiondelar = 0,2 - Hitta på två bråk som ger en

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,

Läs mer

M0038M Differentialkalkyl, Lekt 8, H15

M0038M Differentialkalkyl, Lekt 8, H15 M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal

Läs mer

Lösning av trigonometriska ekvationer

Lösning av trigonometriska ekvationer Lösning av trigonometriska ekvationer Uppsala universitet 06 Per Engström per.engtrom@math.uu.se Inledning För att lösa problem i som innehåller trigonometriska funktioner kan mab bahöva lösa trigonometriska

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

2146 a. v = 290 v = 290 omvandlingsfaktor rad v = 290 v = rad v 5.1 rad

2146 a. v = 290 v = 290 omvandlingsfaktor rad v = 290 v = rad v 5.1 rad 146 a v = 38 v = 38 omvandlingsfaktor rad v = 38 180 rad v = 0.663 rad v 0.7 rad c v = 90 v = 90 omvandlingsfaktor rad v = 90 180 rad v = 5.061 rad v 5.1 rad b v = 196 v = 196 omvandlingsfaktor rad v =

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Studieanvisning till Matematik 3000 kurs D

Studieanvisning till Matematik 3000 kurs D Studieanvisning till Matematik 3000 kurs D ISBN 91-27-51028-X Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs D/Komvux av Lars-Eric Björk, Hans

Läs mer

Trigonometri. Joakim Östlund Patrik Lindegrén 28 oktober 2003

Trigonometri. Joakim Östlund Patrik Lindegrén 28 oktober 2003 Trigonometri Joakim Östlund Patrik Lindegrén 28 oktober 2003 1 Sammanfattning Trigonometrin är en mycket intressant och användbar del av matematiken. Med hjälp av dom samband och relationer som förklaras

Läs mer

Matematik 4 Kap 2 Trigonometri och grafer

Matematik 4 Kap 2 Trigonometri och grafer Matematik 4 Kap 2 Trigonometri och grafer Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Matematik över gränserna

Matematik över gränserna 13 februari 2001 Matematik över gränserna Bifogade sidor innehåller en del av det material som användes i kursen. Kursmaterialet finns att hämta på nätet via en länk från www.sm.luth.se/~harry/. Kursmaterialet

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1 Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel , ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

2320 a. Svar: C = 25. Svar: C = 90

2320 a. Svar: C = 25. Svar: C = 90 2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

Om komplexa tal och funktioner

Om komplexa tal och funktioner Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen

Läs mer

1.1 Polynomfunktion s.7-15

1.1 Polynomfunktion s.7-15 1.1 Polynomfunktion Vad är då en funktion? En funktion är en regel i matematiken som beskriver sambandet mellan två storheter. T.ex. Hur många hjul har 3 bilar? 3 4 = 12 Hur många hjul har 4 bilar? 4 4

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER

GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER 2015-09-02 GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER Nils Karlsson INDEX MATEMATISKA TAL...2 Värdesiffror...2 Absolutbelopp...3 Skala...3 STATISTIK...4 Lägesmått...4 Spridningsmått...4 Normalfördelning...4

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts. 5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0.08.06 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

en primitiv funktion till 3x + 1. Vi får Integralen blir

en primitiv funktion till 3x + 1. Vi får Integralen blir Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

M0038M Differentialkalkyl, Lekt 7, H15

M0038M Differentialkalkyl, Lekt 7, H15 M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan

Läs mer

Algebraiska räkningar

Algebraiska räkningar Kapitel 1 Algebraiska räkningar 1.1 Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller bl.a. följande enkla räkneregler, som man väl använder utan att speciellt tänka på dem:

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

inga frågor är dumma, varje student skall känna sig sedd och respekterad, studenterna skall få en god introduktion i ett högskolemässigt arbetssätt.

inga frågor är dumma, varje student skall känna sig sedd och respekterad, studenterna skall få en god introduktion i ett högskolemässigt arbetssätt. Institutionen för matematik Staffan Lundberg augusti 2006 FINPLANERING, FÖRBEREDANDE KURS I MATEMATIK Till Dig som undervisar på proppen. Inledning: Efter genomförd enkät med fjolårets ettor, kommer vi

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

8.4. Integration av trigonometriska uttryck

8.4. Integration av trigonometriska uttryck 68 8 PRIMITIVA FUNKTIONER 8.4. Integration av trigonometriska uttryck Exempel 8.. Bestäm sin 3 x + cos x dx. Trigonometriska ettan tillsammans med ett variabelbyte ger sin 3 x cos + cos x dx = x ( cos

Läs mer

Tal Räknelagar. Sammanfattning Ma1

Tal Räknelagar. Sammanfattning Ma1 Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer