KOKBOKEN 1. Håkan Strömberg KTH STH

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "KOKBOKEN 1. Håkan Strömberg KTH STH"

Transkript

1 KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006

2 Håkan Strömberg 2 KTH Syd

3 Innehåll Olikheter Uppgift Uppgift Uppgift Uppgift Ekvationer med absolutbelopp Uppgift Uppgift Olikheter med absolutbelopp Problem Problem Avståndet mellan två punkter i rummet Längden (normen) av en vektor Normerad vektor Bestäm linjens ekvation med hjälp av två punkter Uppgift Uppgift Visar om två ekvationer anger samma linje Linjens ekvation från parameterfri till parameterform

4 INNEHÅLL Bestäm skalärprodukten Bestäm vinkeln mellan två vektorer Avståndet från en punkt till en linje Formel för: Avståndet från en punkt till en linje Bestäm projektionen Uppgift Uppgift Vektorprodukt Linje genom två punkter skär plan Planets ekvation för tre givna punkter Skärningen mellan två linjer Planets ekvation Normalvektor och punkt givna Uppgift 2. På normalform med punkt och två vektorer givna Avstånd från punkt till plan Uppgift 2. Alternativ Planets ekvation på parameterform Ligger punkten på linjen? Bestäm arean till parallellogram Håkan Strömberg 4 KTH Syd

5 INNEHÅLL Bestäm skärningen mellan två plan Bestäm vinkeln mellan två plan Bestäm vinkeln mellan en linje och ett plan Håkan Strömberg 5 KTH Syd

6 OLIKHETER Olikheter Lös olikheten x 2 x 6 < 0 1 Faktorisera polynomet 2 Ställ upp tabell för teckenstudium 3 Utläs svaret ur tabellen 1 Andragradsekvationen har rötterna x 1 = 3 och x 2 = 2 vilket leder fram till faktoriseringen (x 3)(x + 2) < 0. 2 Svar: 2 < x < 3 x < 2 x = 2 2 < x < 3 x = 3 x > 3 x x (x 3)(x + 2) Håkan Strömberg 6 KTH Syd

7 INNEHÅLL Uppgift 2 Lös olikheten 4 x x Ställ upp tabell för teckenstudium 2 Utläs svaret ur tabellen 1 x < 2 x = 2 2 < x < 4 x = 4 x > 4 4 x x x x+2 odef + 0 Svar: 2 < x 4 Håkan Strömberg 7 KTH Syd

8 OLIKHETER Uppgift 3 Lös olikheten x 2 + 2x + 1 x 1 < 0 1 Faktorisera täljaren 2 Ställ upp tabell för teckenstudium 3 Utläs svaret ur tabellen 1 Vi ser att täljaren kan skrivas om som (x + 1) 2 (första kvadreringsregeln). 2 Svar: x < 1 eller 1 < x < 1 x < 1 x = 1 1 < x < 1 x = 1 x > 1 x x x (x+1) 2 x 1 0 odef + Håkan Strömberg 8 KTH Syd

9 INNEHÅLL Uppgift 4 Lös olikheten x 2 2x 3 x 2 + 2x 8 > 0 1 Faktorisera täljaren 2 Faktorisera nämnaren 3 Sortera nollställena i stigande ordning och ställ upp tabell för teckenstudium. 4 Utläs svaret ur tabellen 1 Täljarens motsvarande andragradsekvation har rötterna x 1 = 1 och x 2 = 3 vilket leder fram till faktoriseringen (x + 1)(x 3). 2 Nämnarens motsvarande andragradsekvation har rötterna x 1 = 2 och x 2 = 4 vilket leder fram till faktoriseringen (x 2)(x + 4). 3 Vi kan nu skriva om olikheten (x + 1)(x 3) (x 2)(x + 4) 0 x < 4 x = 4 4 < x < 1 x = 1 1 < x < 2 x = 2 2 < x < 3 x = 3 x > 3 x x x x (x+1)(x 3) (x 2)(x+4) + odef 0 + odef 0 + Svar: x < 4 eller 1 x < 2 eller x 3 (se grafen nedan) Håkan Strömberg 9 KTH Syd

10 OLIKHETER Uppgift 5 Lös olikheten x + 1 x Se till att högerledet blir 0 och att det vänstra ledet endast innehåller ett rationellt uttryck (bråk). 2 Ställ upp tabell för teckenstudium 3 Utläs svaret ur tabellen 1 x + 1 x 3 3; x + 1 x 3 3 0; x + 1 3(x 3) 0; x 3 x x x x < 3 x = 3 3 < x < 5 x = 5 x > x x x x 3 odef + 0 Svar: 3 < x 5 Håkan Strömberg 10 KTH Syd

11 INNEHÅLL Ekvationer med absolutbelopp Lös ekvationen x + 3 = 5 1 Ta reda på x 1, där termen med absolutbeloppet är = 0. 2 Dela upp ekvationen i två ekvationer. En då x < x 1 och en då x > x 1. Ersätt tecknet för absolutbelopp med en parentes. Sätt -tecken framför parentesen om så skall vara! 3 Lös de båda ekvationerna var för sig. Kontrollera att erhållen rot ligger i aktuellt intervall. 1 Då x = 3 är x + 3 = 0. 2,3 Vi får två ekvationer Då Ekvation Rot OK x < 3 (x + 3) = 5 x = 8 Ja x 3 x + 3 = 5 x = 2 Ja Svar: x 1 = 8 och x 2 = 2 Håkan Strömberg 11 KTH Syd

12 EKVATIONER MED ABSOLUTBELOPP Uppgift 2 Lös ekvationen x 6 x = 4 1 Ta reda på x 1, för vilket x 6 = 0 2 Betrakta två intervall. Ett där x < x 1 och ett där x > x 1. Lös upp termen med absolutbelopp och bilda samtidigt två ekvationer. 3 Lös ekvationerna och kontrollera att roten ligger i intervallet. 1 Då x = 6 är x 6 = 0 2 De två ekvationerna me gällande intervall Då Ekvation Rot OK x < 6 (x 6) x = 4 x = 1 Ja x 6 (x 6) x = 4 ingen rot Nej Svar: x = 1 Håkan Strömberg 12 KTH Syd

13 INNEHÅLL Uppgift 3 Lös ekvationen x x + 2x 3 = 0 1 Ta reda på de x i för vilka var och en av de tre termerna = 0. 2 Sortera de tre brytpunkterna och skapa fyra intervall, man kan finna utefter x-axeln. 3 Lös upp absolutbeloppen inom varje intervall och bilda på så sätt fyra ekvationer. 4 Lös ekvationerna och kontrollera att roten ligger i aktuellt intervall. 1,2 De tre eftersökta x-värdena är x 1 = 1, x 2 = 3 2 och x 3 = 4 3 Vi har nu att studera följande fyra intervall 4 Detta ger oss följande ekvationer x < 1 1 x < x < 4 x 4 Då Ekvation Rot OK x < 1 (x + 1) 2(4 x) (2x 3) = 0 x = 6 Ja 1 x < 3 2 (x + 1) 2(4 x) (2x 3) = 0 x = 4 Nej 3 x < 4 (x + 1) 2(4 x) + (2x 3) = 0 x = 2 Ja 2 x 4 (x + 1) + 2(4 x) + (2x 3) = 0 x = 6 Nej Svar: x 1 = 6 och x 2 = 2 (se grafen nedan) Håkan Strömberg 13 KTH Syd

14 OLIKHETER MED ABSOLUTBELOPP Olikheter med absolutbelopp Problem 1 Lös olikheten x 2 + x 4 < 8 1 Ta reda på x 1, för vilket x 2 = 0 och det x 2 för vilket x 4 = 0 2 Betrakta tre intervall. Ett där x < x 1, ett då x 1 x x 2 och ett då x > x 2. Lös upp absolutbeloppen och bilda olikheter utan absolutbelopp, ett för varje intervall. 3 Lös olikheterna och kontrollera inom vilken del av intervallet som olikheten gäller. 1 x 1 = 2 och x 2 = 4 2 Intervallen är x < 2, 2 x 4 och x > 4. 3 Då Olikhet Lösning Intervall x < 2 (x 2) (x 4) < 8 x > 1 1 < x < 2 2 x < 4 (x 2) (x 4) < 8 Alltid 2 x < 4 x > 4 (x 2) + (x 4) < 8 x < 7 4 x < 7 För en del av första intervallet gäller olikheten, för hela andra intervallet och åter för en del av tredje. Sammantaget fås Svar: 1 < x < 7 Håkan Strömberg 14 KTH Syd

15 INNEHÅLL Problem 2 Lös olikheten 2x 4 + x < 5 x 1 Ta reda på de x i, för vilka termerna är = 0 2 Ställ upp fyra intervall inom vilka olikheten ska lösas. Lös upp absolutbeloppen och bilda olikheter utan absolutbelopp, ett för varje intervall. 3 Lös olikheterna och kontrollera att roten ligger i intervallet. 1 x 1 = 0, x 2 = 2 och x 3 = 5 2 De fyra intervallen är 3 x < 0 0 x < 2 2 x < 5 x 5 Då Olikhet Lösning Intervall x < 0 (2x 4) x < (5 x) x > < x < 0 0 x < 2 (2x 4) + x < (5 x) Alltid 0 x < 2 2 x < 5 (2x 4) + x < (5 x) x < x < 9 4 x 5 (2x 4) + x < (5 x) x < 1 2 Inget x Svar: 1 2 < x < 9 4 Håkan Strömberg 15 KTH Syd

16 AVSTÅNDET MELLAN TVÅ PUNKTER I RUMMET Avståndet mellan två punkter i rummet Endast som en del i ett större problem. Bestäm avståndet mellan punkterna P 1 = (5, 9, 7) och P 2 = (1, 2, 3) 1 Vi använder direkt avståndsformeln 1 P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 P 1 P 2 = (5 1) 2 + (9 2) 2 + (7 3) 2 = = 81 = 9 Svar : Avståndet mellan punkterna är 9 Håkan Strömberg 16 KTH Syd

17 INNEHÅLL Längden (normen) av en vektor Endast som en del i ett större problem. Bestäm längden av vektorn v = (6, 3, 2) 1 Vi använder följande formel v = v v2 2 + v2 3 1 v = = = 49 = 7 Håkan Strömberg 17 KTH Syd

18 NORMERAD VEKTOR Normerad vektor Endast som en del i ett större problem. Bestäm den normerade vektorn r till 1 Bestäm längden av vektorn v v = (4, 8, 1) 2 När vi dividerar varje komposant med v får vi den normerade vektorn r. ( v1 r = v, v 2 v, v ) 3 v 1 2 Svar: r = ( 4 9, 8 9, 1 ) 9 v = = = 9 r = ( 4 9, 8 9, 1 ) 9 Håkan Strömberg 18 KTH Syd

19 INNEHÅLL Bestäm linjens ekvation med hjälp av två punkter Bestäm ekvationen, på parameterform, för den linje som går genom punkterna P 1 = (1, 4, 2) och P 2 = (9, 4, 3) 1 Välj en av de två punkterna 2 Bestäm en riktningsvektor med hjälp av de två givna punkterna. 3 Sammanställ valen till linjens ekvation 1 Vi väljer punkten P 1 2 r väljs till P 1 P 2 P1 P 2 = (9, 4, 3) (1, 4, 2) = (8, 0, 1) 3 x = 1 + 8t y = 4 + 0t z = 2 + 1t Det finns fyra närliggande sätt att konstruera linjens ekvation. Två val av punkten och två sätt av bestämma riktningsvektorn. Svar: x = 1 + 8t y = 4 z = 2 + t Håkan Strömberg 19 KTH Syd

20 BESTÄM LINJENS EKVATION MED HJÄLP AV TVÅ PUNKTER Uppgift 2 Bestäm ekvationen, på vektorform, för den linje som går genom punkterna P 1 = (1, 4, 2) och P 2 = (9, 4, 3) 1 Välj en av de två punkterna 2 Bestäm en riktningsvektor med hjälp av de två givna punkterna. 3 Sammanställ valen till linjens ekvation 1 Vi väljer punkten P 2 2 r = P 2 P 1 = ( 8, 0, 1) 3 P 2 + P 2 P 1 t = (9, 4, 3) + ( 8, 0, 1)t Svar: (9, 4, 3) + ( 8, 0, 1)t Håkan Strömberg 20 KTH Syd

21 INNEHÅLL Uppgift 3 Bestäm ekvationen, på parameterfri form, för den linje, som går genom punkterna P 1 = (6, 5, 4) och P 2 = (1, 2, 3). 1 Välj en av de givna punkterna till punkten P 0 1 Bestäm en riktningsvektor r = (r 1, r 2, r 3 ) 2 Följande formel ger direkt ekvationen på parameterfri form x x 0 r 1 = y y 0 r 2 = z z 0 r 3 1 Vi väljer punkten P 1 2 r = (6, 5, 4) (1, 2, 3) = (5, 3, 1) 3 Med hjälp av formeln får vi nu x 6 5 = y 5 3 = z 4 1 Svar: x 6 5 = y 5 3 = z 4 Håkan Strömberg 21 KTH Syd

22 VISAR OM TVÅ EKVATIONER ANGER SAMMA LINJE Visar om två ekvationer anger samma linje Är de två linjerna och l 1 = (9, 4, 3) + ( 8, 0, 1)t l 2 = (1, 4, 2) + (16, 0, 2)t identiska? 1 P 1 är den punkt som erhålles då t = 0 i l 1 2 Ta reda på om P 1 är möjlig att erhålla genom lämpligt valt t för l 2. Om så vet vi att P 1 även ligger på l 2. Om inte vet vi redan nu att linjerna inte är identiska. 3 P 2 är den punkt vi erhåller då t = 0 i l 2 4 Ta på samma sätt reda på om P 2 ligger på l 1. Om så är fallet vet vi att P 2 ligger på l 1. 5 Om två linjer har två gemensamma punkter är de identiska. 1 P 1 = (9, 4, 3) 2 Sök t i 3 P 2 = (1, 4, 2) 2 Sök t i (9, 4, 3) = (1, 4, 2) + (16, 0, 2)t (8, 0, 1) = (16, 0, 2)t t = 1 2 (1, 4, 2) = (9, 4, 3) + ( 8, 0, 1)t ( 8, 0, 1) = ( 8, 0, 1)t t = 1 Svar: De två linjerna innehåller båda punkterna P 1 och P 2 vilket betyder att linjerna är identiska. Håkan Strömberg 22 KTH Syd

23 INNEHÅLL Linjens ekvation från parameterfri till parameterform Överför linjens ekvation till parameterform x 3 2 = y + 2 = z 3 1 Sätt var och en av de tre uttrycken lika med t och lös ut x, y respektive z Svar: 1 x 3 2 = t x = 3 + 2t y + 2 = t y = 2 + t z 3 = t z = 0 + 3t x = 3 + 2t y = 2 + t z = 3t Håkan Strömberg 23 KTH Syd

24 BESTÄM SKALÄRPRODUKTEN Bestäm skalärprodukten Bestäm skalärprodukten till de två vektorerna v = (2, 4, 3) och u = (1, 2, 5) 1 Vi använder direkt formeln på de två vektorerna v = (v 1, v 2, v 3 ) och u = (u 1, u 2, u 3 ) v u = (v 1, v 2, v 3 ) (u 1, u 2, u 3 ) = v 1 u 1 + v 2 u 2 + v 3 u 3 1 Vi har vektorerna v = (2, 4, 3) och u = (1, 2, 5) och får (2, 4, 3) (1, 2, 5) = ( 2) = = 9 Svar: v u = 9 Håkan Strömberg 24 KTH Syd

25 INNEHÅLL Bestäm vinkeln mellan två vektorer Bestäm vinkeln mellan vektorerna v = (0, 2, 1) och u = (5, 1, 5) 1 Bestäm v och u 2 Bestäm v u 3 Använd sedan formeln för att bestämma cosθ 4 I sista steget har vi att bestämma cosθ = θ = arccos v u v u ( ) v u v u 1 v = ( 2) = 5 u = ( 1) 2 + ( 5) 2 = v u = (0, 2, 1) (5, 1, 5) = ( 2) ( 1) + 1 ( 5) = 3 3 cosθ = 5 51 ( ) 3 θ = arccos 5 51 ( ) 3 Svar: θ = arccos 5 51 Längre än så kommer vi inte utan räknedosa eller dator. Däremot kan det vara bra att kunna följande samband ( ) 1 arccos = π 2 3 = 60 arccos(0) = π 2 = 90 ( ) 3 arccos = π ( ) = 30 arccos 2 = π 4 = 45 Håkan Strömberg 25 KTH Syd

26 AVSTÅNDET FRÅN EN PUNKT TILL EN LINJE Avståndet från en punkt till en linje Givet punkten P 1 = (3, 7, 9) och linjen l = (10, 5, 1) + ( 4, 1, 1)t. Bestäm det kortaste avståndet mellan P 1 och linjen l. 1 Bilda en vektor v, som startar i godtycklig punkt P på linjen och slutar i P 1. 2 Ta fram en riktningsvektor r till linjen l. 3 Vektorerna v och r ska vara vinkelräta mot varandra. Detta betyder att v r = 0. Ställ upp detta uttryck. 4 Eftersom t ingår i uttrycket har vi en ekvation som ska lösas. 5 Rötterna till ekvationen ger punkten P. 6 Då vi har både P 1 och P kan nu det eftersökta avståndet bestämmas 1 P = (10 4t, 5 t, 1 + t) är en godtycklig punkt på linjen. Den eftersökta vektorn blir v = PP1 = (10 4t, 5 t, 1 + t)(3, 7, 9) = ( 7 + 4t, 2 + t, 10 t) 2 För t = 0 och t = 1 får vi bekvämt två punkter på linjen P 2 = (10, 5, 1) och P 3 = (6, 4, 0) och bildar r = (10, 5, 1)(6, 4, 0) = ( 4, 1, 1) 3 Vi bestämmer skalärprodukten v r v r = ( 7 + 4t, 2 + t, 10 t) ( 4, 1, 1) = ( 4)( 7 + 4t) + ( 1)(2 + t) + 1(10 t) = 28 16t 2 t + 10 t = 36 18t 4 Vi löser nu i huvudet ekvationen v r = 0, som alltså är 36 18t = 0 med roten t = 2 5 Genom t = 2 får vi punkten P = (10 4 2, 5 2, 1 + 2) = (2, 3, 1) 6 Avståndet mellan P och P1 är (2 3)2 + (3 7) 2 + (1 9) 2 = = 9 Svar: Det sökta avståndet är 9 Håkan Strömberg 26 KTH Syd

27 INNEHÅLL Formel för: Avståndet från en punkt till en linje Givet punkten P 0 = (3, 7, 9) och linjen l = (10, 5, 1) + ( 4, 1, 1)t. Bestäm det kortaste avståndet mellan P 1 och linjen l. 1 För den givna punkten P 0 = (x 0, y 0, z 0 ) och en linje genom punkten P 1 = (x 1, y 1, z 1 ) med riktningsvektorn r = (a, b, c) får vi direkt avståndet genom formeln y 2 0 y 1 z 0 z 1 b c + z 2 0 z 1 x 0 x 1 c a + x 2 0 x 1 y 0 y 1 a b a 2 + b 2 + c 2 1 Vi sätter in talen för r = ( 4, 1, 1), P 1 = (10, 5, 1) och P 0 = (3, 7, 9) ( 1) ( 1) ( 4) 2 + ( 1) Svar: Det sökta avståndet är ( 4) 2 + ( 1) = 81 = 9 18 I planet är motsvarande formel betydligt enklare. Givet linjen ax + by + c = 0 och P 0 = (x 0, y 0 ) vars avstånd d till linjen ska bestämmas. Formeln nedan ger svaret d = ax 0 + by 0 + c a2 + b Håkan Strömberg 27 KTH Syd

28 BESTÄM PROJEKTIONEN Bestäm projektionen Bestäm den vinkelräta projektionen av u = (14, 21, 7) i riktningen v = (2, 6, 3) 1 Bestäm en enhetsvektor r i samma riktning som v 2 Beräkna u r 3 Beräkna ( u r) r 1a v = = 49 = 7 1b Svar: 2 Beräkna 3 Beräkna ( u r) r ( 38 7, 114 7, 57 ) 7 r = u r = (14, 21, 7) ( 2 7, 6 7, 3 ) 7 ( 2 7, 6 7, 3 ) = = 19 7 ( , 6 7, 3 ) ( 38 = 7 7, 114 7, 57 ) 7 Håkan Strömberg 28 KTH Syd

29 INNEHÅLL Uppgift 2 Sök projektionen av vektorn v = (1, 4, 3) på vektorn u = (2, 1, 1). Lösning 1 w har samma riktning som u, men är troligtvis inte lika lång. Teckna där för w som en faktor k gånger u, alltså som w = k u. 2 w + p = v leder till p = v w. Vi kan alltså uttrycka p med hjälp av w och v. 3 p ska vara vinkelrät mot w och då är p w = 0. En ekvation med k som obekant. En av de erhållna rötterna ger oss det tal man ska multiplicera u med för att få w 1 w = k u = k(2, 1, 1) = (2k, k, k) 2 p = v w = (1, 4, 3) (2k, k, k) = (1 2k, 4 k, 3 k) 3 w p = 0 ger nu (1 2k, 4 k, 3 k) (2k, k, k) = 0 2k(1 2k) + k(4 k) + k( 3 k) = 0 3k(1 2k) = 0 k 1 = 1 2 k 1 = 0 Nu har vi k och kan skriva w = ( 1, 1 2, 1 ) 2 Vi kommer alltid att få k = 0 som en rot till ekvationen ovan därför att vektorn (0, 0, 0) (nollvektorn) är vinkelrät mot alla vektorer (även till sig själv!) Håkan Strömberg 29 KTH Syd

30 BESTÄM PROJEKTIONEN Uppgift 3 Sök projektionen av vektorn v = (1, 4, 3) på vektorn u = (2, 1, 1). Använd direkt formeln w = v u u 2 u w = (1, 4, 3) (2, 1, 1) (2, 1, 1) w = ( 3)1 6 w = 3 (2, 1, 1) 6 w = ( 1, 1, ) (2, 1, 1) Håkan Strömberg 30 KTH Syd

31 INNEHÅLL Vektorprodukt Bestäm vektorprodukten av vektorerna v = (1, 2, 3) och u = (1, 1, 0) 1 Ställ upp determinanten 2 Beräkna determinanten 1 Vi har de tre enhetsvektorerna e x = (1, 0, 0) e y = (0, 1, 0) e x = (0, 0, 1) och får determinanten v u = (1, 0, 0) (0, 1, 0) (0, 0, 1) Svar: ( 3, 3, 1) (1, 0, 0) 2 0 (0, 1, 0) (0, 0, 1) 1 1 (0, 0, 1) (0, 1, 0) 3 1 (1, 0, 0) 3 1 = (0, 0, 1) (0, 0, 2) + (0, 3, 0) (3, 0, 0) = ( , , ) = ( 3, 3, 1) Håkan Strömberg 31 KTH Syd

32 LINJE GENOM TVÅ PUNKTER SKÄR PLAN Linje genom två punkter skär plan Givet två punkter P 1 = (1, 2, 3) och P 2 = (4, 1, 6). Var skär linjen, genom dessa punkter, planet 2x + 3y + 4z = 5? 1 Ta fram linjens ekvation på parameterform. 2 Ersätt x, y och z i planets ekvation med motsvarande uttryck i t. 3 Lös den uppkomna ekvationen med avseende på t. 4 Sätt in detta t-värde i linjens ekvation 1 På vektorform får vi l = (1, 2, 3)+t (4, 1, 6)(1, 2, 3) som i parameterform ger x = 1 3t y = 2 + 3t z = 3 3t 2 3 2(1 3t) + 3(2 + 3t) + 4(3 3t) = 5 2(1 3t) + 3(2 + 3t) + 4(3 3t) = 5 2 6t t t = t = 5 t = x = = 4 y = = 7 z = Svar: Den eftersökta punkten är ( 4, 7, 2) Håkan Strömberg 32 KTH Syd

33 INNEHÅLL Planets ekvation för tre givna punkter Tre punkter P 1 = (1, 3, 0), P 2 = (3, 2, 1) och P 3 = (3, 3, 2) är givna. Bestäm planets ekvation på normalform. 1 Bilda två vektorer v och u med hjälp av de tre punkterna. 2 Eftersom de bildade vektorerna v och u är parallella med planet är v u en normalvektor till planet. Ta fram denna normalvektor n. 3 Vi kan nu skriva planets ekvation för allt utom den konstanta koefficienten. Denna får vi fram genom att sätta in en av de tre punkterna. 1 v = P 2 P 1 = (1, 3, 0) (3, 2, 1) = ( 2, 1, 1) och u = P 3 P 1 = (1, 3, 0) (3, 3, 2) = ( 2, 0, 2) 2 3 n = u v = e x e y e z = 2 e x 2 e y + 2 e z = ( 2, 2, 2) 2x 2y + 2z + d = 0 när vi till exempel sätter in punkten P 1 = (1, 3, 0) får vi får vi d = d = 0 Svar: 2x 2y + 2z + 8 = 0 eller varför inte 2x + 2y 2z = 8 Håkan Strömberg 33 KTH Syd

34 SKÄRNINGEN MELLAN TVÅ LINJER Skärningen mellan två linjer Bestäm skärningspunkten mellan de två linjerna l 1 = (1, 2, 3) + (4, 5, 6)t och l 2 = ( 1, 4, 4) + (2, 7, 7)t 1 Konvertera linjernas ekvationer till parameterform 2 Byt ut t mot s i en av ekvationerna! 3 Ställ upp ett ekvationssystem med tre ekvationer och två obekanta 4 Använd de två första ekvationerna för att få s och t 5 Sätt in erhållna värden på s och t i den tredje ekvationen. Om likhet erhålles skär verkligen ekvationerna varandra. 6 Använd antingen t-värdet i den första ekvationen eller s-värdet i den andra för att erhålla skärningspunkten. 1 (x, y, z) = (1 + 4t, 2 + 5t, 3 + 6t) och (x, y, z) = ( 1 + 2t, 4 + 7t, 4 + 7t) 2 (x, y, z) = (1 + 4t, 2 + 5t, 3 + 6t) och (x, y, z) = ( 1 + 2s, 4 + 7s, 4 + 7s) t = 1 + 2s 2 + 5t = 4 + 7s 3 + 6t = 4 + 7s 4 { 1 + 4t = 1 + 2s 2 + 5t = 4 + 7s 5 ger = 1 och t = 1 (behöver förstås inte vara lika) 3 + 6( 1) = 4 + 7( 1) 3 = 3 Likhet råder, alltså har vi funnit en skärningspunkt. 6 Vi använder t = 1 i l 1 och får (x, y, z) = (1 + 4( 1), 2 + 5( 1), 3 + 6( 1)) = ( 3, 3, 3) Svar: Skärningspunkten ( 3, 3, 3) Håkan Strömberg 34 KTH Syd

35 INNEHÅLL Planets ekvation. Normalvektor och punkt givna Bestäm planets ekvation då vi känner en normalvektor n = (1, 2, 3) till planet och en punkt P 0 = (4, 5, 6) som ligger i planet 1 Använd formeln med normalvektorn n = (A, B, C) och P 0 = (x 0, y 0, z 0 ) 2 Förenkla uttrycket för att nå fram till 1 Insatt i formeln får vi A(x x 0 ) + B(y y 0 ) + C(z z 0 ) = 0 Ax + By + CZ = D 1(x 4) + 2(y 5) + 3(z 6) = 0 2 Förenkling 1(x 4) + 2(y 5) + 3(z 6) = 0 x 4 + 2y z 18 = 0 x + 2y + 3z = 32 Svar: Planets ekvation kan skrivas x + 2y + 3z = 32 Håkan Strömberg 35 KTH Syd

36 PLANETS EKVATION Uppgift 2. På normalform med punkt och två vektorer givna Bestäm planets ekvation på normalform då punkten P = (1, 2, 2) och riktningsvektorerna v = (3, 1, 2) och u = (2, 6, 4) är givna. 1 Med punkten P 0 = (x 0, y 0, z 0 ) och riktningsvektorerna r 1 = (a 1, b 1, c 1 ) och r 2 = (a 2, b 2, c 2 ) får man ekvationen med hjälp av följande determinant x x 0 y y 0 z z 0 a 1 b 1 c 1 a 2 b 2 c 2 1 x 1 y 2 z = (x 1) (y 2) (z 2) 3 6 (x 1) 2 6 (y 2) 3 4 (z 2) 1 2 = 8(x 1) 8(y 2) + 16(z 2) = 8x + 8 8y z 32 = 8x 8y + 16z 8 Svar: Ekvationen kan skrivas x y + 2z = 1 Den här metoden kan användas även för 3 punkter givna, genom att bilda två riktningsvektorer 2 punkter och en riktningsvektor givna, genom att bilda ytterligare en riktningsvektor med hjälp av de två punkterna. Håkan Strömberg 36 KTH Syd

37 INNEHÅLL Avstånd från punkt till plan Bestäm avståndet från punkten P 1 = (1, 2, 4) till planet med ekvationen 2x + 3y + 4z + 5 = 0. 1 Bestäm normalvektorn n till planet 2 Bestäm ekvationen för den linje l, som går genom P 1 och har riktning n 3 Bestäm linjens skärningpunkt P 2 med planet genom att ersätta x, y och z med motsvarande uttryck i t. 4 Sätt in t-värdet i linjens ekvation och erhåll skärningspunkten 5 Bestäm avståndet mellan P 1 och P 2 1 Normalvektorn är n = (2, 3, 4) 2 Den sökta linjen l har ekvationen (x, y, z) = (1, 2, 4) + (2, 3, 4)t Vi skriver den på parameterfri form x = 1 + 2t y = 2 + 3t z = 4 + 4t 3 2(1 + 2t) + 3(2 + 3t) + 4(4 + 4t) + 5 = t t t + 5 = 0 29t + 29 = 0 t = 1 4 Skärningspunkten P 2 = ( 1, 1, 0) 5 Avståndet mellan P 1 och P 2 är x = 1 + 2( 1) = 1 y = 2 + 3( 1) = 1 z = 4 + 4( 1) = 0 d = (1 ( 1)) 2 + (2 ( 1)) 2 + (4 0) 2 = = 29 Svar: Avståndet är 29 Håkan Strömberg 37 KTH Syd

38 AVSTÅND FRÅN PUNKT TILL PLAN Uppgift 2. Alternativ Bestäm avståndet från punkten P 1 = (1, 2, 4) till planet med ekvationen 2x + 3y + 4z + 5 = 0. 1 Med punkten P 0 = (x 0, y 0, z 0 ) och planets ekvation Ax + By + Cz + d = 0 kan avståndet direkt bestämmas med hjälp av följande formel: d = Ax 0 + By 0 + Cz 0 + D A2 + B 2 + C 2 1 d = = = Svar: 29 Håkan Strömberg 38 KTH Syd

39 INNEHÅLL Planets ekvation på parameterform Tre punkter är givna P 1 = (1, 2, 3), P 2 = (4, 5, 6) och P 3 = (7, 7, 7); Skriv planets ekvation på parameterform. 1 Bilda två vektorer, r 1 och r 2, med hjälp av de tre punkterna. 2 Välj ut en av de tre punkterna 3 Ställ upp planets ekvation 1 r 1 = P 1 P 3 = (7, 7, 7) (1, 2, 3) = (6, 5, 4) r 2 = P 1 P 2 = (7, 7, 7) (4, 5, 6) = (3, 2, 1) 2 Vi väljer punkten P 2 3 x = 4 + 6t + 3s y = 5 + 5t + 2s z = 6 + 4t + 1s För varje val av s och t får vi en punkt i planet. Håkan Strömberg 39 KTH Syd

40 LIGGER PUNKTEN PÅ LINJEN? Ligger punkten på linjen? Ta reda på om punkten P = (1, 2, 4) ligger på linjen x = 5 + 8t y = 5 + 6t z = 6 + 4t 1 Bestäm t så att punktens x-koordinat hamnar på linjen. 2 Då ska också för samma t-värde både y- och z-koordinaten ligga på linjen 1 1 = 5 + 8t ger t = ( 1) = 2 vilket visar att y-koordinaten hamnar rätt ( 1 ) = 4, så 2 även z-koordinaten. Punkten ligger alltså på linjen. Så fort en av dessa två undersökningarna leder till motsägelse, ligger punkten utanför linjen. Svar: Punkten ligger på linjen Håkan Strömberg 40 KTH Syd

41 INNEHÅLL Bestäm arean till parallellogram Bestäm arean till det parallellogram som spänns upp av vektorerna v = (8, 2, 7) och u = (7, 8, 3). 1 Denna area A = v u. Bestäm först w = v u 2 och därefter w 1 Uppställningen av v u ger e x e y e z w = v u = = = 2 3 e x e y e z 7 8 e x 8 3 e y 2 7 e z = (6 56) e x + (49 24) e y + (64 14) e z = ( 50, 25, 50) 2 A = ( 50) = 5625 = 75 Svar: Arean av det uppspända parallellogrammet är 75 a.e. Håkan Strömberg 41 KTH Syd

42 BESTÄM SKÄRNINGEN MELLAN TVÅ PLAN Bestäm skärningen mellan två plan Bestäm skärningen mellan planen 4y x z = 3 och 3x 11y + 3z = 6. 1 Sätt z = t och lös det uppkomna ekvationssystemet med avseende på x och y. { A1 x + B 1 y + C 1 t = D 1 A 2 x + B 2 y + C 2 t = D 2 2 Svaret ger oss direkt ekvationen för den linje som beskriver skärningen mellan planen 1 { x + 4y t = 3 3x 11y + 3t = 6 2 Vi löser först ut x ur den första ekvationen och får x = 4y 3 t. Detta resultat sätter vi in i den andra ekvationen, som vi löser med avseende på y 3(4y 3 t) 11y + 3t = 6 12y 9 3t 11y + 3t = 6 y = 15 y = 15 insatt i x = 4y 3 t ger x = 57 t. Vi har nu x, y och z uttryckta i t och kan skriva linjens ekvation x = 57 1 t = 57 t y = t = 15 z = t = t Svar: x = 57 t y = 15 z = t Håkan Strömberg 42 KTH Syd

43 INNEHÅLL Bestäm vinkeln mellan två plan Bestäm vinkeln θ, mellan planen 5x + 3y 8z = 3 och 9x + 4y + z = 8. 1 Ta fram normalvektorerna n 1 och n 2 2 Beräkna normalvektorernas norm, n 1 och n 2. 3 Använd definitionen för skalärprodukt för att bestämma vinkeln. ( ) n1 n 2 θ = arccos n 1 n 2 1 n 1 = (5, 3, 8) och n 1 = (9, 4, 1). 2 n 1 = ( 8) 2 = 98 och n 2 = = 98 3 θ = arccos Svar: Vinkeln mellan planen är 60 (5, 3, 8) (9, 4, 1) = arccos = arccos = π 3 Håkan Strömberg 43 KTH Syd

44 BESTÄM VINKELN MELLAN EN LINJE OCH ETT PLAN Bestäm vinkeln mellan en linje och ett plan Bestäm vinkeln mellan planet 5x + 3y + 8z = 10 linjen x = 3 + 2t y = 4 + t z = 9 + t 1 Ta fram en normalvektor n till planet 2 Bestäm längden hos n 3 Ta fram en riktningsvektor r till linjen 4 Bestäm längden hos r 5 Använd definitionen för skalärprodukt för att bestämma vinkeln α mellan r och n. ( ) n r α = arccos n r 6 Vinkeln θ, mellan planet och linjen är då θ = π/2 α 1 n = (5, 3, 8) 2 n = = 98 = r = (2, 1, 1) 4 r = = 6 5 ( ) (5, 3, 8) (2, 1, 1) 21 α = arccos = arccos = arccos = arccos 2 = π 6 6 θ = π 2 π 6 = π 3 Svar: Vinkeln mellan planet och linjen är 60 Håkan Strömberg 44 KTH Syd

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2010 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 7 Uppgift 1................................. 7 Uppgift 2.................................

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 = Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

2+t = 4+s t = 2+s 2 t = s

2+t = 4+s t = 2+s 2 t = s Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)

Läs mer

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Moment 4.3.1, 4.3.2 Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Planet Ett plan i rummet är bestämt då två icke parallella

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0 Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t) Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Komplexa tal med Mathematica

Komplexa tal med Mathematica Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Att beräkna:: Avstånd

Att beräkna:: Avstånd Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre

Läs mer

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av: MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut. vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Vektorer för naturvetare. Kjell Elfström

Vektorer för naturvetare. Kjell Elfström Vektorer för naturvetare Kjell Elfström Copyright c Kjell Elfström 2015 Första upplagan, mars 2015 Innehållsförteckning 1 Vektorer 5 1.1 Vektorbegreppet......................... 5 1.2 Operationer på vektorer.....................

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c. UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 2 Institutionen för matematik KTH 2 november 2016 Skalärprodukt Dagens ämne: Skalärprodukt, kapitel 1.3-1.4 i boken Definition, skalärprodukt på två sätt Vinklar mellan vektorer Norm Plan och

Läs mer

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

Föreläsningsanteckningar i linjär algebra

Föreläsningsanteckningar i linjär algebra 1 Föreläsningsanteckningar i linjär algebra Per Jönsson och Stefan Gustafsson Malmö 2013 2 Innehåll 1 Linjära ekvationssystem 5 2 Vektorer 11 3 Linjer och plan 21 4 Skalärprodukt 27 5 Vektorprodukt 41

Läs mer

Lösningar till utvalda uppgifter i kapitel 8

Lösningar till utvalda uppgifter i kapitel 8 Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

Tillämpad Matematik II Övning 1

Tillämpad Matematik II Övning 1 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer.

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer. Ortogonalitet Man kan tala om vinkel mellan vektorer.. Skalär produkt Vi definierar längden (eller normen) av en vektor som ett reellt tal 0 (Se boken avsnitt.). Vi definierar skalär produkt (Inner product),

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra Datum: 7

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

Repetition inför tentamen

Repetition inför tentamen Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8

Läs mer

Bestäm den matris B som löser ekvationen = 1 2

Bestäm den matris B som löser ekvationen = 1 2 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer