Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a"

Transkript

1 Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem med lika många obekanta som ekvationer. Genom n ekvationer och n obekanta uppstår alltså ett kvadratiskt system a 11 x 1 +a 12 x a 1n x n = b 1 a 21 x 1 +a 22 x a 2n x n = b 2... a n1 x 1 +a n2 x a nn x n = b n Att lösa ett ekvationssystem Linjära ekvationssystem med 2 och 3 obekanta och lika många ekvationer klarar vi att lösa för hand utan vidare, men vi löser för säkerhets skull ett med 3 obekanta här. Innan vi startar lösningsproceduren måste vi acceptera följande påstående Sats 1. Det är, utan att förändra lösningen till ett linjärt ekvationssystem, möjligt att Multiplicera en ekvation med en konstant 0. Byta plats på två ekvationer Addera en multipel av en ekvation till en annan Håkan Strömberg 1 KTH Syd

2 3x y +2z = 7 x +y 2z = 3 multiplicera med -3 x 3y +2z = 1 multiplicera med -3 3x y +2z = 7 addera rad 1 till 2 och 3 3x 3y +6z = 9 3x +9y 6z = 3 3x y +2z = 7 4y +8z = 16 multiplicera rad 2 med 2 +8y 4z = 4 3x y +2z = 7 8y +16z = 32 addera rad 2 till 3 +8y 4z = 4 3x y +2z = 7 8y +16z = z = 36 Vi ser nu att z = 3, som vi kan använda för att få y = 2 i andra raden och x = 1 i första raden. Då antalet obekanta växer blir arbetet dock mer svåröverskådligt och en, administrativt, klarare metod känns nödvändig. Det får vi vänta med ett par veckor då vi åter ska ta upp linjära ekvationssystem! Exempel 1. Lös ekvationssystemet x+y+z = 6 x+2y+2z = 9 x+y+2z = 7 Lösning: Detta är ett ganska snällt ekvationssystem. Om vi subtraherar rad 1 från rad 2 och subtraherar rad 1 från rad 3 får vi x+y+z = 6 y+z = 3 z = 1 Vi har alltså redan fått ut z = 1 som vi substituerar i rad 2 och får y+1 = 3 som ger y = 2. Med dessa två värden kan vi så med hjälp av rad 1 få ut x, x+2+1 = 6 ger x = 3. Nu är det långt ifrån alltid det går så lätt! Exempel 2. Lös ekvationssystemet { x+y+2z = 1 2x+2y+4z = 3 Lösning: Detta är ett underbestämt ekvationssystem. Det vill säga det finns fler obekanta än ekvationer. Detta betyder att vi aldrig kan få ett genomgående numeriskt svar för de tre obekanta. Håkan Strömberg 2 KTH Syd

3 Vi subtraherar 2 rad 1 från rad 2 och får { x+y+2z = 1 0 = 1 Vilket betyder att systemet saknar lösning. Exempel 3. Lös ekvationssystemet { x+4y+5z = 1 2x+8y+10z = 2 Lösning: Vi tar till samma medicin som i förra exemplet och får { x+4y+5z = 1 Hur ska vi tolka det här resultatet? Eftersom rad 2 är ute ur räkningen räcker det att hitta (x,y,z) så att rad 1 satisfieras. Till exempel x = 0,y = 1 och z = 1. Vi förstår att det finns oändligt många lösningar. Välj ett godtyckligt x och y och fixa till z så att resultatet bli 1. rad 1 beskriver ett plan i rummet (ska vi ta upp senare). rad 2 beskriver samma plan. Det är ju bara att dividera båda sidor med 2 i rad 2. Alla punkter som ligger på detta plan är lösningar till systemet. Lösningen brukar man skri skriva så här x = 1 4t 5s y = t z = s Där s och t är godtyckliga tal. Exempel 4. Lös ekvationssystemet x+y = 2 2x+2y = 4 3x+3y = 7 Lösning: Den här gången handlar det om ett överbestämt ekvationssystem. Det vill säga det finns fler ekvationer än obekanta. Normalt lämnar man då ekvationer åt sidan. I det här fallet rad 3 och löser systemet för de övriga rad 1 och rad 2. Men den här gången är det enklare än så. Vi subtraherar 2 rad 1 från rad 2 och 3 rad 1 från rad 3 och får x+y = 2 0 = 1 Detta betyder beroende på 0 = 1 att systemet saknar lösningar. Exempel 5. Lös ekvationssystemet x+y = 2 2x+2y = 4 x y = 0 Håkan Strömberg 3 KTH Syd

4 Lösning: Vi subtraherar 2 rad 1 från rad 2 och rad 1 från rad 3 och får x+y = 2 2y = 2 rad 3 ger y = 1 och därefter får vi i rad 1 x+1 = 2 som ger x = 1. Den skarpögde ser att det handlar om tre räta linjer och att rad 1 och rad 2 är samma räta linje. Denna linje skär den från rad 3 i punkten (1,1). Exempel 6. Lös ekvationssystemet x+y = 2 2x+2y = 4 3x+3y = 6 Lösning: Vi subtraherar 2 rad 1 från rad 2 och 3 rad 1 från rad 3 och och får x+y = 2 Självklart är det här samma linje i alla tre raderna. Vilket betyder att alla punkter som ligger på denna linje är lösning till systemet. Vi kan skriva lösningen på parameterform { x = 2 t y = t Där t är ett godtyckligt tal. Exempel 7. x+y+z = 7 x+2y+3z = 11 2x+y+2z = 12 Lösning: Vi startar med att subtrahera rad 1 från radrad 2 och 2 rad 1 från rad 3. Vi får då x+y+z = 7 y+2z = 4 y = 2 Från detta får vi att y = 2, som vi substituerar i rad 2 och får z = 1. Till sid får vi i rad 1 x+2+1 = 7 som ger x = 4. Exempel 8. x+y+z = 3 x+2y+2z = 5 2x+3y+3z = 2 Lösning: Vi startar med att subtrahera rad 1 från rad 2 och 2 rad 1 från rad 3. Vi får då: x+y+z = 3 y+z = 2 y+z = 4 Håkan Strömberg 4 KTH Syd

5 Subtraherar vi rad 2 från rad 3 får vi så x+y+z = 3 y+z = 2 0 = 6 Detta betyder då som tidigare att systemet saknar lösning. Exempel 9. Lös följande system med avseende på x och y för alla värden på a och b. { x+2y = 1 2x+ay = b Lösning: Ser enkelt ut eller? Vi startar med att subtrahera 2 rad 1 från rad 2 och får { x+2y = 1 Vi löser ut y och får (a 4)y = b 2 y = b 2 a 4 Finns det något tal vi inte kan tillåta som värde hos a. Om a = 4 så får vi 0 i nämnare och det är inte kul. Men så fort a 4 så får vi en lösning, vilket värde b än har. Fall I a 4 Vi löser med hjälp av rad 1 ut x och får när vi substituerar lösningen av y x = 1 2 b 2 a 4 Vi gör liknämnigt och får till slut x = a 2b a 4 Vad händer då egentligen om a = 4? Vi vet nu att det kommer att innebära att nämnaren blir 0. Men om b = 2 så blir även täljaren 0 och vi får 0 0. Just nu bestämmer vi oss att b 2. Systemet får då följande form Fall II a = 4 och b 2 { x+2y = 1 0 = b 2 Eftersom b 2, betyder det att alla andra värden på b leder till att systemet saknar lösning. Fall III a = 4 och b = 2 Återstår då att låta a = 4 och b = 2. Då får vi { x+2y = 1 och då har systemet plötsligt oändligt många lösningar. I första fallet Håkan Strömberg 5 KTH Syd

6 Exempel 10. Vi har nått målet! ett system med 3 obekanta och 2 parametrar. Lös följande system med avseende på x,y och z för alla värden på a och b. x+y+z = 2 x+2y+2z = 3 2x+3y+az = b Lösning: Vi börjar med att subtrahera rad 1 från rad 2 och 2 rad 1 från rad 3 och får x+y+z = 2 y+z = 1 y+(a 2)z = b 4 I nästa steg subtraherar vi rad 2 från rad 3 och nu har vi x+y+z = 2 y+z = 1 (a 3)z = b 5 Nu är det dags att lösa ut z. z = b 5 a 3 Precis som i förra exemplet ser vi nu tre fall Fall I a 3 Här får vi exakt en lösning. Efter en del räknande Fall II a = 3 och b 5 Systemet har då formen z = b 5 a 3 y = a b+2 a 3 x = 1 x+y+z = 2 y+z = 1 0 = b 5 Eftersom b här inte får vara = 5, saknar systemet lösning. Fall III a = 3 och b = 5 Systemet får då följande form x+y+z = 2 y+z = 1 Vi subtraherar rad 2 från rad 1 och får x = 1 y+z = 1 Håkan Strömberg 6 KTH Syd

7 Nu har vi plötsligt ett system med 3 obekanta och endast 2 ekvationer. Systemet är underbestämt. Vi tar in en ny parameter t och bestämmer att z = t. Då blir y = 1 t. Vi vet dessutom att x = 1. Sätter vi in dessa värden i det ursprungliga systemet, så ser vi att det stämmer. Jag hoppas att vi ska förstå detta bättre när vi senare kommer plan och linjer i rummet! Nu ska vi avsluta med att skriva ett ordentligt svar: Fall I a 3 Fall II a = 3 och b 5 Ingen lösning x = 1 y = a b+2 a 3 z = b 5 a 3 Fall III a = 3 och b = 5 Oändligt många lösningar x = 1 y = 1 t z = t där t är ett godtyckligt tal. Räkneövningar Utdelat den 4 sep Problem 1. (KS ) Lös olikheten Problem 2. (KS ) Lös ekvationen Problem 3. (KS A 7) Lös olikheten Problem 4. (KS B 7) Lös olikheten Problem 5. (KS ) Lös ekvationen Problem 6. (KS ) Lös olikheten Problem 7. (KS ) Lös olikheten x 2 2x+3 < 1 x 4 +1 x 2 = 0 x 2 > 2x+1 x 3 > 2x 1 2 x 2 = x+4 x 2 3 x+1 x 2x+5 < 3 x Håkan Strömberg 7 KTH Syd

8 Problem 8. (KS ) Lös olikheten Problem 9. (KS ) Lös olikheten x 2 +3x 1 x+2 < 1 Problem 10. (KS ) Lös olikheten 6 x > 2x 8 x 2 x 1 3x+4 Problem 11. (KS ) Avgör om punkterna ( 1, 2, 1),(8, 1, 7) och (5, 0, 5) ligger på samma linje. (3p) Problem 12. (KS ) Bestäm avståndet mellan punkterna ( 2, 2, 4) och (3, 2, 1). Problem 13. (KS ) För vilka värden på s och t är vektorerna u = (4, 3,s) och v = (2,t, 1) parallella? Problem 14. (T050114) Vektorerna u = ( 1,2,3), v = (2, 1,5) och w = ( 7,8, 1) är givna. Bestäm talen a och b så att w = a u+b v Problem 15. (T060822) För vilka reella tal p är linjerna L 1 = (1,1,1) +t(3,5,p +1) och L 2 = (1,1,1) +t(6,10,12) parallella Svar 1. (KS ) < 1 x 2 2x+3 < 1; x 2 2x+3 1 < 0; x 2 2x 3 < 0; 2x+3 (x+1)(x 3) 2x+3 < 0; x < 3 2 x = < x < 1 x = 1 1 < x < 3 x = 3 x > 3 x x x (x+1)(x 3) 2x+3 odef Svar: x < 3 2 eller 1 < x < 3 Svar 2. (KS ) Eftersom x 4 = 0 då x = 4 sönderfaller ekvationen i två delproblem. Ett då x < 4 och ett då x 4. Då x 4: x 4+1 x 2 = 0 x = 6 och då x 4: (x 4)+1 x 2 = 0 x = 10 3 Efter att ha testat rötterna i den ursprungliga ekvationen kan vi skriva svaret: x 1 = 6 och x 2 = 10 3 Svar 3. (KS A 7) a) x 2 = x 2 då x 2 och x 2 = (x 2) då x < 2 Håkan Strömberg 8 KTH Syd

9 b) 2x+1 = 2x+1 då x 1 2 och 2x+1 = (2x+1) då x < 1 2 Vi har att lösa tre delproblem Svar: 3 < x < 1 3 Svar 4. (KS B 7) Då Olikhet Lösning Intervall x < 1 2 (x 2) > (2x+1) x > 3 3 < x < x 2 (x 2) > 2x+1 x < x < 1 3 x > 2 x 2 > 2x+1 x < 3 inget x a) x 3 = x 3 då x 3 och x 3 = (x 3) då x < 3 b) 2x 1 = 2x 1 då x 1 2 och 2x 1 = (2x 1) då x < 1 2 Vi har att lösa tre delproblem Svar: 2 < x < 4 3 Då Olikhet Lösning Intervall x < 1 2 (x 3) > (2x 1) x > 2 2 < x < x 3 (x 3) > 2x 1 x < x < 4 3 x > 3 x 3 > 2x 1 x < 2 inget x Svar 5. (KS ) Ekvationen sönderfaller i två beståndsdelar a) x 2; 2(x 2) = x+4; 2x 4 = x+4; x = 8 b) x < 2; 2(x 2) = x+4; 2x+4 = x+4; x = 0 För a) ser vi att x = 8 ligger i intervallet x 2 och för b) att x = 0 också ligger i intervallet. Svar: x 1 = 0 och x 2 = 8 Svar 6. (KS ) Först skriver vi x 2 3 x+1 x 0. Vi tar reda på när uttrycken innanför absolutbeloppstecknen är = 0 genom att lösa de två ekvationerna. x 2 leder genom x 2 = 0, x = 2 leder till x < 2; (x 2) x 2; x 2 x+1 leder genom ekvationen x+1 = 0, x = 1 till x < 1; (x+1) x 1; x+1 Vi har nu att ta hänsyn till tre intervall och får följande tabell: Då Olikhet Lösning Intervall x < 1 (x 2)+3(x+1) x 0 x 5 x 5 1 x < 2 (x 2) 3(x+1) x 0 x x 2 x 2 (x 2) 3(x+1) x 0 x 5 3 x > 2 Håkan Strömberg 9 KTH Syd

10 Svar: x 5 eller x 1 5 Svar 7. (KS ) för 2x+5 3 x < 0 undersöker vi de båda absolutbeloppen. 2x+5 leder genom ekvationen 2x+5 = 0, x = 5 2 till x < 5 2 ; (2x+5) x 5 2 ; 2x+5 3 x leder genom ekvationen 2x+5 = 0, x = 5 2 till Detta leder till tre intervall x 3; 3 x x > 3; (3 x) Då Olikhet Lösning Intervall x < 5 2 (2x+5)+3 x < 0 x > 8 8 < x < x < 3 2x+5 (3 x) < 0 x < x < 2 3 x > 2 2x+5+3 x x < 8 inget Svar: 8 < x < 2 3 Svar 8. (KS ) Vi startar med att skriva om uttrycket x 2 +3x 1 x+2 1 < 0; x 2 +3x 1 (x+2) x+2 och sedan faktorisera täljaren till (x 1)(x+3). Vi har nu (x 1)(x+3) x+2 < 0 < 0; x2 +2x 3 x+2 Vi betraktar nu de tre linjära uttrycken och tar reda på när de är = 0. Vi får x = 1, x = 3 och x = 2. Nu över till tabellen x < 3 x = 3 3 < x < 2 x = 2 2 < x < 1 x = 1 x > 1 x x x (x 1)(x+3) x odef 0 + Svar: x < 3 eller 2 < x < 1 Svar 9. (KS ) Först får vi 6 x 2x 8 > 0 och undersöker sedan de båda absolutbeloppen. 6 x leder genom ekvationen 6 x = 0, x = 6 till x 6; 6 x x > 6; (6 x) 2x 8 leder genom ekvationen 2x 8 = 0, x = 4 till x < 4; (2x 8) x 4; 2x 8 Håkan Strömberg 10 KTH Syd

11 Detta leder till tre intervall Då Olikhet Lösning Intervall x < 4 6 x+(2x 8) > 0 x > 2 2 < x < 4 4 x 6 6 x (2x 8) > 0 x < x < 14 3 x > 6 (6 x) (2x 8) > 0 x < 2 inget Svar: 2 < x < 14 3 Svar 10. (KS ) Vi startar med att skriva om uttrycket x 2 x 1 3x+4 1 < 0; x 2 x 1 (3x+4) 3x+4 och sedan faktorisera täljaren till (x+1)(x 5). Vi har nu < 0; x2 4x 5 3x+4 (x+1)(x 5) 3x+4 Vi betraktar nu de tre linjära uttrycken och tar reda på när de är = 0. Vi får x = 1, x = 5 och x = 4 3. Nu över till tabellen < 0 x < 4 3 x = < x < 1 x = 1 1 < x < 5 x = 5 x > 5 x x x (x+1)(x 5) 3x+4 odef Svar: x < 4 3 eller 1 < x < 5 Svar 11. Riktningsvektor för linjen genom de två förstnämnda punkterna är Linjens ekvation blir då ( 1,2, 1)(8, 1, 7) = (8, 1, 7) ( 1,2, 1) = (9, 3, 6) 5 = 1+9t 0 = 2 3t 5 = 1 6t När vi löser de tre ekvationerna får vi i samtliga fall t = 2 3, vilket visar att punkterna ligger på samma linje. Svar 12. Vi får direkt ( 2 3) 2 +( 2 ( 2) 2 +(4 1) 2 = ( 5) = 34 Svar 13. Att de är parallella betyder inte att de måste vara lika långa. Vi får ekvationssystemet 4 = 2 k 3 = t k s = 1 k med lösningen k = 2,t = 3 2 och s = 2 Håkan Strömberg 11 KTH Syd

12 Svar 14. Svaret får vi genom att lösa ekvationssystemet a+2b = 7 2a b = 0 3a+5b = 1 Med lösningen a = 3 och b = 2 Svar 15. Linjerna är parallella endast då Vi löser ekvationen 6 3 = 10 5 = 12 p = 12 p+1 som har roten p = 5. Linjerna är parallella endast då p = 5 Håkan Strömberg 12 KTH Syd

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Moment 4.3.1, 4.3.2 Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Planet Ett plan i rummet är bestämt då två icke parallella

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2010 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 7 Uppgift 1................................. 7 Uppgift 2.................................

Läs mer

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0 Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Övningstenta 6. d b = 389. c d a b = 1319 b a

Övningstenta 6. d b = 389. c d a b = 1319 b a Övningstenta 6 Problem 1. Vilket är det största antalet olika element en symmetrisk matris A(n n kan ha? Problem. Bestäm de reella talen a,b,c och d då man vet att a b d c = 109 a c d b = 389 c d a b =

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll Ekvationer 1.1 Förstagradsekvationer.......................... 5.1.1 Övningar............................ 6. Andragradsekvationer..........................

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Repetition av matematik inför kurs i statistik 1-10 p.

Repetition av matematik inför kurs i statistik 1-10 p. Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda

Läs mer

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA. Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

vilket är intervallet (0, ).

vilket är intervallet (0, ). Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0 1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen a 1 x 1 + a 2 x 2 + a n x n = b, med givna tal a 1,..., a n och b. Ett linjärt ekvationssystem

Läs mer

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Matematiska uppgifter

Matematiska uppgifter Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Onsdagen 17 november 2010. Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Onsdagen 17 november 2010 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

8.5 Minstakvadratmetoden

8.5 Minstakvadratmetoden 8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8)

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8) 1 Matematiska Institutionen KTH Tentamen på kursen SF1604 (och B1109, för D1, Mars 9, 008, kl: 9:00-14:00 Inga hjälpmedel ät tillåtna 1 poäng totalt eller mer ger minst omdömet Fx 1 poäng totalt eller

Läs mer

Att beräkna:: Avstånd

Att beräkna:: Avstånd Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Ekvationssystem - Övningar

Ekvationssystem - Övningar Ekvationssystem - Övningar Uppgift nr 1 y = 5x x + y = 54 Uppgift nr 2 y = 2x x + y = 12 Uppgift nr 3 y = 3x + 7 4x + y = 35 Uppgift nr 4 y = 4x - 18 3x + y = 38 Uppgift nr 5 2x - 2y = -4 x - 3y = 4 Uppgift

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används

Läs mer