SKRIVNING I VEKTORGEOMETRI
|
|
- Åsa Olofsson
- för 6 år sedan
- Visningar:
Transkript
1 SKRIVNING I VEKTORGEOMETRI Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm en avbildning för den linjära avbildning som projicerar varje vektor i rummet ortogonalt mot planet med ekvationen x 1 x 2 x = Antag att den linjära avbildningen F av rummet har avbildningsmatrisen A = 6 2 a a, 2 + a där a är en konstant. Bestäm dim N(F ) och dim V (F ) om (a) a = 1 (b) a = 7 (c) a =.. Bestäm konstanten a så att det finns en ON-bas av egenvektorer till en linjär avbildning med matrisen ( ) 0 2 A =. a Bestäm även en sådan bas. 4. Avgör om punkten P = (1, 1, 1) ligger närmast den räta linjen x = 1 + 2t x = 1 + 2t L 1 : y = 2 t eller L 2 : y = 1 + t z = 2t z = 1 + t.. Planen Π 1 och Π 2 spänns båda upp av de två vektorerna u = (1, 1, 2) och v = (2, 0, 1), och är därmed parallella. Planet Π 1 innehåller punkten P 1 = (1, 2, 0) medan Π 2 innehåller punkten P 2 = (0, 2, 1). Bestäm avståndet mellan planen.
2 SKRIVNING I VEKTORGEOMETRI Lösningsförslag 1. Låt oss kalla avbildningen för P (som i projektion!). Om n är en normalvektor för det aktuella planet, så kan avbildningen P skrivas som där P (u) = u λn, (1) λ = u n n 2 ges av projektionsformeln. Normalvektorn ges av n = (1, 1, ), vilket betyder att n 2 = ( 1) =. Låt u = (x 1, x 2, x ) vara en godtycklig vektor i rummet och antag att dess projektion på planet ges av P (u) = (y 1, y 2, y ). Då följer från (1), att (y 1, y 2, y ) = (x 1, x 2, x ) λ(1, 1, ) = (x 1 λ, x 2 + λ, x + λ), där λ enligt projektionsformeln är lika med Detta ger att λ = u n n 2 = x 1 x 2 x. (2) y 1 = x 1 λ = x 1 1 (x 1 x 2 x ) = 1 (26x 1 + x 2 + x ) y 2 = x 2 + λ = x (x 1 x 2 x ) = 1 (x x 2 x ) y = x + λ = x + (x 1 x 2 x ) = 1 (x 1 x 2 + 2x ), vilket på matrisform kan skrivas som y 1 y 2 = x x 2. y 2 x Matrisen A = 1 är alltså den sökta avbildningsmatrisen Alternativt kan vi beräkna bilderna P (e 1 ), P (e 2 ) och P (e ) av var och en av basvektorerna. Koordinaterna för dessa vektorer kommer att utgöra kolonnerna i avbildningsmatrisen för P. Som tidigare använder vi oss av formel (1), men vi måste komma ihåg beräkna ett nytt värde på λ med hjälp av (2), för varje basvektor. För t.ex. vektorn e 1 blir λ = e 1 n n 2 = 1.
3 Detta medför i sin tur att P (e 1 ) = e 1 λn = (1, 0, 0) 1 (1, 1, ) = 1 (26, 1, ), vilket ger den första kolonnen i avbildningsmatrisen A. För vektorn e 2 får vi på motsvarande sätt att λ = 1/, och därmed att P (e 2 ) = e 2 λn = (0, 1, 0) (1, 1, ) = (1, 26, ) är den andra kolonnen i A. På motsvarande vis blir den tredje kolonnen. P (e ) = 1 (,, 2) Ett tredje alternativ att bestämma matrisen A är att göra ett basbyte, till en mer fiffig bas, i vilken avbildningsmatrisen kommer att vara en diagonalmatris. Först noterar vi att vektorn u = (1, 1, 0) ligger i planet, i och med att den uppfyller planets ekvation. Normalvektorn n = (1, 1, ) är därmed ortogonal mot u. En tredje vektor, som är ortogonal mot både u och n är vektorprodukten v = u n = (,, 2). Liksom u, ligger även v i planet. Om vi nu normerar var och en vektorerna u, n och v, och sätter f 1 = u u = 1 2 (1, 1, 0), f 2 = n n = 1 (1, 1, ), f = v v = 1 (,, 2), 6 så kommer f 1, f 2, f att vara en ON-bas, i vilken P har avbildningsmatrisen B = 0 0 0, på grund kolonnerna hos B är bilderna av basvektorerna f 1, f 2 respektive f i just denna bas; vi har P (f 1 ) = f 1 och P (f ) = f på grund av att f 1 och f ligger i planet, och därmed är sina egna skuggbilder, och P (f 2 ) = 0 på grund av att f 2 är parallell med riktningen på projektionen, som ju är en ortogonal projektion. Sambandet mellan B och den matris A vi söker ges nu av A = TBT T, där T är transformationsmatrisen; dess kolonner utgörs av koordinaterna för de nya basvektorerna f 1, f 2, f (i den ursprungliga basen). (Att vi i formeln ovan kan ha T T i stället för som brukligt T 1, beror på att vi byter från en ON-bas till en annan, och då är transformationsmatrisen vid basbytet alltid en ortogonal matris; T 1 = T T ). Nackdelen med ovanstående metod är att elementen i matrisen T inte är några snälla och beskedliga heltal eller bråktal, så det kommer att bli litet risiga räkningar. Slutresultatet blir dock samma matris A som vi fick ovan.
4 Svar: = Nollrummet till F består av alla vektorer v som uppfyller F (v) = 0. Vi kan bestämma detta nollrum genom att lösa det homogena ekvationssystemet AX = O. (a) För a = 1 får vi ekvationssystemet 6x 1 + 6x 2 + 6x = 0 x 1 + x 2 + x = 0 x 1 + x 2 + x = 0. Samtliga tre ekvationer i systemet är ekvivalenta med x 1 + x 2 + x = 0, vilken vi kan tolka som ekvationen för ett plan. Nollrummet till F är därmed just detta plan, vilket betyder att dim N(F ) = 2. Dimensionssatsen medför därmed att dim V (F ) = 2 = 1. (b) Fallet a = 7 ger oss ekvationssystemet 6x 1 + 6x 2 2x = 0 9x 1 + x 2 + x = 0 x 1 x 2 + x = 0. En lösning på parameterform till detta ekvationssystem ges av x 1 = t x 2 = t x = 6t, vilket vi kan tolka som ekvationen för en rät linje (genom origo). Alltså är dim N(F ) = 1, varvid dimensionssatsen ger dim V (F ) = 1 = 2. (c) Om a = så är 6x 1 + 6x 2 + 8x = 0 x 1 + x 2 + x = 0 x 1 + x 2 + x = 0 det ekvationssystem som ska lösas. I detta fall är x 1 = x 2 = x = 0 den enda lösningen, vilket man kan se antingen genom att lösa det på vanligt vis, eller konstatera att koefficientmatrisen har en nollskild determinant (den är lika med 40). Nollrummet består därmed enbart av nollvektorn, vilket innebär att dim N(F ) = 0 och dim V (F ) =. Svar: (a) dim N(F ) = 2, dim V (F ) = 1 (b) dim N(F ) = 1, dim V (F ) = 2 (c) dim N(F ) = 0, dim V (F ) =.. För att en ON-bas av egenvektorer ska kunna existera är det nödvändigt (och tillräckligt) att matrisen A är symmetrisk, d.v.s. att A T = A. Detta innebär att vi måste ha a = 2. För detta värde på a bestämmer vi nu de olika egenvärdena, genom att lösa
5 sekularekvationen: det(a λe) = 0 λ 2 2 λ = 0 λ( λ) 2 2 = 0 λ 2 + λ 4 = 0 ( λ = 2 ± ) = 2 2 ± 2. Vi konstaterar att de två egenvärdena ges av λ 1 = 4 och λ 2 = 1. Dessa två egenvärden är som synes olika, vilket innebär att varje egenvektor som svarar mot λ 1 är ortogonal mot varje egenvektor som svarar mot λ 2. Vi behöver därmed endast bestämma en egenvektor av längd 1 för respektive egenvärde för att få vår hett eftertraktade ON-bas. Egenvektorerna bestäms genom att lösa ekvationssystemet AX = λx för λ = λ 1 = 4 respektive λ = λ 2 = 1. För λ = 4 får vi ekvationssystemet { { { 2x 2 = 4x 1 4x1 + 2x 2 = 0 2x 1 x 2 = 4x 2 2x 1 + x 2 = 0 x1 = t x 2 = 2t. Varje vektor på formen t( 1, 2), där t 0, är alltså en egenvektor till egenvärdet λ = 4. Genom att välja t = 1/ får vi en egenvektor av längd 1. Om λ = 1 blir det istället till att lösa { { 2x 2 = x 1 x1 + 2x 2 = 0 2x 1 x 2 = x 2 2x 1 4x 2 = 0 { x1 = 2t x 2 = t. Egenvektorerna har här utseendet t(2, 1), t 0. Valet t = 1/ ger en egenvektor av längd 1. Svar: a = 2; ON-bas: e 1 = 1 ( 1, 2), e 2 = 1 (2, 1) 4. Låt Q 1 = (1 + 2t, 2 t, 2t) vara en godtycklig punkt på L 1. Vi söker t så att vektorn Q 1 P = (2t, 1 t, 1 + 2t) blir så kort som möjligt. Detta inträffar precis när denna vektor är ortogonal mot riktningsvektorn till L 1, d.v.s. v 1 = (2, 1, 2). Vi önskar därmed att lösa ekvationen v 1 Q 1 P = 0 2 (1 + 2t) + ( 1) (2 t) + 2 ( 1 + 2t) = 0 För detta värde på t blir Q 1 P = 9t = 0 t = 1. ( 2 1, 1 1, ) = 1 (2, 2, 1) en vektor av längd ( 1) 2 = 1. Välj nu en godtycklig punkt Q 2 = ( 1 + 2t, 1 + t, 1 + t) på L 2. När vektorn Q 2 P = ( 2 + 2t, 2 + t, t) är ortogonal mot v 2 = (2, 1, 1), riktningsvektorn
6 till L 2, så kommer Q 2 att vara den punkt på L 2 som ligger närmast P. Genom att lösa ekvationen v 2 Q 2 P = 0 2 ( 2 + 2t) + 1 ( 2 + t) + 1 t = 0 6t 6 = 0 t = 1, ser vi att den kortaste vektorn blir Q 2 P = (0, 1, 1), som är en vektor av längd 02 + ( 1) = 2. Eftersom 2 > 1, ligger P följaktligen närmast L 1. Svar: P ligger närmast L 1. Vi börjar med att skriva vart och ett av planen på normalform. Detta kan göras på tre olika sätt. Metod 1: Teckna en ekvation på parameterform för planet Π 1. I och med att Π 1 innehåller punkten P 1 = (1, 2, 0) och spänns upp av vektorerna u = (1, 1, 2) och v = (2, 0, 1) betyder detta att x = 1 + t 1 + 2t 2 y = 2 + t 1 z = 2t 1 + t 2 är en sådan ekvation. Genom att lösa ovanstående ekvationssystem med avseende på t 1 och t 2, kan en ekvation på normalform härledas. Om vi multiplicerar den tredje ekvationen med 2 och adderar resultatet till den första ekvationen, uppkommer x 2z = 1 + t 1 y = 2 + t 1 z = 2t 1 + t 2. Enligt den första ekvationen är här t 1 = x 2z 1, medan vi från ekvationen i mitten å sin sida får att t 1 = y 10. Detta ger att x 2z 1 = y 10 x y 2z + 9 = 0 är en ekvation för Π 1 på normalform. Vi skulle kunna plocka fram en ekvation för Π 2 på samma sätt, men istället för att genomföra i stort sett samma räkningar en gång till, kan vi utnyttja att vi vet att Π 1 och Π 2 är parallella. Detta innebär att vi kan välja samma normalvektor för båda planen. Från ekvationen för Π 1 läser vi av att n = (1,, 2) är en normalvektor för detta plan; denna vektor duger alltså även som normalvektor för Π 2. En ekvation på normalform för Π 2 kan därmed tecknas som x y 2z + D 2 = 0, där D 2 sedan kan bestämmas genom att utnyttja att P 2 = (0, 2, 1) måste uppfylla ekvationen för Π 2 : D 2 = 0 D 2 = 12. Planet Π 2 har alltså ekvationen x y 2z + 12 = 0.
7 Metod 2: En godtycklig punkt P = (x, y, z) ligger i planet Π 1, om och endast om de tre vektorerna u, v och P P 1 = (x 1, y 2, z) är linjärt beroende. Detta betyder i sin tur att den determinant, vars kolonner utgörs av dessa tre vektorer, måste vara noll, d.v.s. 1 2 x y z = 0. Med hjälp av t.ex. Sarrus regel får vi att determinanten i vänsterledet är lika med x y 2z+9. På nytt får vi alltså att x y 2z+9 = 0 som en ekvation på normalform för Π 1. Planet Π 2 kan sedan beräknas med en motsvarande determinant (den tredje kolonnen i determinanten blir istället vektorn P P 2 = (x, y 2, z 1)), eller så utnyttjar vi att planen kan antas ha samma normalvektor, precis som i fallet med Metod 1. Metod : Som redan nämnts, kan vi anta att planen har samma normalvektor. En sådan kan bestämmas genom att beräkna vektorprodukten u v. Enligt formeln för vektorprodukt har vi u v = (1, 1, 2) (2, 0, 1) = ( , ( 2) 2 1 1, ) = (1,, 2). Detta ger att Π 1 och Π 2 har ekvationerna x y 2z+D 1 = 0 respektive x y 2z + D 2 = 0. Här kan D 1 och D 2 utifrån att koordinaterna för punkterna P 1 och P 2 ska uppfylla respektive plans ekvation. Sätter vi t.ex. in koordinaterna för P 1 i ekvationen för Π 1 får vi att D 1 = 9. Avståndet mellan planen kan nu bestämmas genom att antingen beräkna det kortaste avståndet mellan punkten P 1 och planet Π 2, eller det kortaste avståndet mellan punkten P 2 och planet Π 1. Vi väljer det första alternativet, och låter L vara den linje som går genom P 1 = (1, 2, 0) och har n = (1,, 2) som normalvektor. På parameterform har denna linje ekvationen x = 1 + t y = 2 t z = 2t. Låt R = (1 + t, 2 t, 2t) vara en godtycklig punkt på L. Då är RP 1 = tn. Om R dessutom ligger i planet Π 2, så gäller (1 + t) (2 t) 2( 2t) + 12 = 0 0t + = 0 t = Det sökta avståndet mellan planen ges därmed av RP 1 = tn = ( ) 2 + ( 2) 2 = 0 10 = 10. Beräknar man istället avståndet mellan P 2 och Π 1 på liknande vis, erhålles samma resultat. Svar: 10
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
SKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Facit/lösningsförslag
Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
4x az = 0 2ax + y = 0 ax + y + z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.
SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B
Tentamen i ETE305 Linjär algebra , 8 13.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk ( p) ( p) ( p) ( p) ( p) ( p) Tentamen i ETE Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t
SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.
ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
LYCKA TILL! kl 8 13
LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Lite Linjär Algebra 2017
Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
A = x
Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,
19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN
9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar
UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.
ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
Linjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
16.7. Nollrum, värderum och dimensionssatsen
170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild
LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym
Provräkning 3, Linjär Algebra, vt 2016.
LINK OPINGS UNIVERSITET Matematiska Institutionen Provräkning, Linjär Algebra, vt 6. Lämna in lösningar för rättning senast 8. onsdagen den 7 april 6. Lämnas in antigen i mitt fack på MaI eller direkt
16.7. Nollrum, värderum och dimensionssatsen
86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,
A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)
SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För
SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016
SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v.
Kapitel 1 Vektorer Vektorbegreppet 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. 1.2 Rita ut vektorerna u=(3,1) och v=( 2,2) i samma koordinatsystem. Illustrera additionerna/subtraktionerna
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)
Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom
Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p)
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Preliminärt lösningsförslag
Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 9 6, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Lösningar till MVE021 Linjär algebra för I
Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter
Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:
SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena
0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.
Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 8 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016
SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del
LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
Lösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl
1 Matematiska Institutionen, KTH Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 08.00-13.00. Examinator: Olof Heden. OBS: Inga
Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016
Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1
= ( 1) ( 1) = 4 0.
MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna
Egenvärden och egenvektorer. Linjär Algebra F15. Pelle
Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v
1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.
Akademin för teknik och miljö Rolf Källström telefonkontakt med examinator via tentamensvakten Matematiktentamen Ingenjörer, lärare, m fl Linjär algebra maa. 5 6 Skrivtid: 9... Inga hjälpmedel. Lösningarna
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till
1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF164 för D, den 5 juni 21 kl 9.- 14.. Examinator: Olof Heden. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Exempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
SF1624 Algebra och geometri
SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del
2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.