16.7. Nollrum, värderum och dimensionssatsen

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "16.7. Nollrum, värderum och dimensionssatsen"

Transkript

1 86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn, dvs F (u) = 0. Nollrummet betecknas med N(F ). 2. Värderummet till F definierar vi som mängden av alla bilder v W,dvs v = F (u) för något u V.Värderummet betecknas med V (F ). Exempel a) I Exempel 6.4 hade vi en ortogonal projektion P : R 3 R 3 på planet W : 2x y 2z = 0. Vi såg då att inga andra vektorer än dem som är parallella med normalen, dvs λn, avbildades på nollvektorn, dvs P (λn) = λp (n) = 0. Alltså är N(P )={λn; λ R} =[n] och dimn(p )=. Vidare gäller att eftersom alla projektioner ligger i planet W,så är V (P )={v = P (u) : u R 3 } =mängden av all bilder under P = W. Vi ser också att dim V (P )=dimw = 2. b) I Exempel 6.7 hade vi en spegling S : R 3 R 3 i planet W.Idethär fallet fanns det inga vektorer som avbildades på nollvektorn. Självklart avbildas alltid nollvektorn på sig själv. Alltså är N(S) ={0} och dim N(S) =0. Eftersom varje vektor i rummet v är en spegelbild av något u, dvsv = S(u), för något u, så gäller att V (S) =R 3 och dim V (S) =3. c) I Exempel 6.28 hade vi rotation R moturs en vinkel θ kring en axel parallell med e 3. Eftersom ingen annan vektor än nollvektorn vrids på nollvektorn, så har vi att N(R) ={0} och dim N(R) =0. Vidare, eftersom varje vektor v bild irummetär en vektor v urbild vriden moturs vinkeln θ, så kan urbilden v urbild fås genom att vrida v bild vinkelen θ medurs. Alltså följer att V (R) =R 3 och dim V (R) =3.

2 6.7 Nollrum, värderum och dimensionssatsen 87 Exempel Låt {e, e 2, e 3 } vara en ON-bas i rummet och låt F vara en linjär avbildning med avbildningsmatrisen A = 0. Visa att vektorn. u =2e e 2 e 3 N(F ). 2. v =2e e 2 +2e 3 V (F ). Lösning:. Vektorn u = e(2,, ) t N(F ), ty F (u) =F (e(2,, ) t )=e Alltså, vektorn u ligger i N(F ). 0 2 = Bilden v = e(2,, 2) t V (F ) om det finns en urbild u = ex, sådan att Nu gäller det att F (u) =v eax = e(2,, 2) t F (u) =v X = 3 0, dvs u = e(3,, 0) t. Detta visar att v V (F ).

3 88 6 LINJÄRA AVBILDNINGAR Exempel Låt avbildningen F och matrisen A vara som i Exempel Vi har sett att vektorn u =2e e 2 e 3 N(F )ochv =2e e 2 +2e 3 V (F ). Frågor som vi ska besvara i det här exemplet är. Finns det fler vektorer än u i N(F )? Kan vi bestämma N(F )? 2. Hur ser V (F ) ut? Vad beskriver det geometriskt och vad är dess dimension? Lösning:. Nollrummet N(F ) består av alla vektorer u = ex som under F avbildas på nollvektorn, dvs Löser vi ekvationssystemet får vi F (u) =0 F (ex) =0 eax = 0 AX = 0. AX = X = t Vi ser alltså att N(F )spänns upp av endast vektorn u = e(2,, ) t. Detta betyder att dim N(F ) = och att N(F ) är en rät linje genom origo, se Figur Vi har definierat V (F ) som mängden av alla bilder v under F,dvsmängden av alla v för vilka det finns en urbild u, dvs om F (u) =v. Omurbildenär u = ex = x e +x 2 e 2 +x 3 e 3 och bilden är v = ey,sågäller att v = F (u) v = F (x e + x 2 e 2 + x 3 e 3 ) v = x F (e )+x 2 F (e 2 )+x 3 F (e 3 ). (6.) Vi ser att bildvektorn v V (F ) är en linjärkombination av bilden av basvektorerna F (e ), F (e 2 )ochf (e 3 ). Eftersom vektorn v är godtycklig i V (F )följer att V (F )=[F (e ),F(e 2 ),F(e 3 )]. Låt oss undersöka om vektorerna är linjärt beroende eller inte. Det gäller att 0 λ F (e )+λ 2 F (e 2 )+λ 3 F (e 3 )= Lösningen till detta system är således λ =2t, λ 2 = t och λ 3 = t. Vi har alltså 2 2tF (e ) tf (e 2 ) tf (e 3 )=0 F (e )= 2 (F (e 2)+F (e 3 )). Vi ser nu att dim V (F )=2ochunderummetV(F)=[F(e 2 ),F(e 3 )] är ett plan genom origo, se Figur 6.4. En normal till detta plan är t.ex. e e 2 e 3 F (e 2 ) F (e 3 )= =2e 0.. Geometriskt är underrummet V (F )={u R 3 : x x 3 =0}, se Figur 6.42.

4 6.7 Nollrum, värderum och dimensionssatsen 89 Figur e 3 e 2 F(u)=0 e u N(F) = [u] Figur 6.4. F(e 3 ) F(e 2 ) F(e )=(F(e 2 ) + F(e 3 ))/2 Figur 6.42.! % # &'! $ ()'"*"*"( + #! $ #! " # &'! % ()'"*!"*"( + #,'&()-&'! " (.&'! $ (/)0!#2 % 3#4 "!4 % )56#

5 90 6 LINJÄRA AVBILDNINGAR Vi såg i uttrycket (6.) i exemplet ovan att varje bildvektor i värderummet till en linjär avbildning är en linjärkombination av bilden av basvektorerna. Detta är bl.a. innebörden av nästa sats. Sats Antag att F : V W är linjär.. Nollrummet N(F ) är ett underrum av V. 2. Värderummet V (F ) är ett underrum av W. 3. Om V =[e, e 2,...,e n ]såv(f)=[f(e ),F(e 2 ),...,F(e n )]. Bevis:. Låt u, u 2 N(F ) V,dvsF (u )=F (u 2 )=0. Dågäller att och F (u + u 2 )=F (u )+F (u 2 )=0 F (λu )=λf (u )=0, dvs u + u 2 N(F )ochλu N(F ). Därmed är N(F ) är ett underrum i V. 2. Om bilderna v, v 2 V (F ) W,såfinnsdeturbilderu, u 2 V, så att v = F (u ) respektive v 2 = F (u 2 ). Det följer att dvs v + v 2 V (F ) samt att v + v 2 = F (u )+F (u 2 )=F (u + u 2 ), λv = λf (u )=F (λu ), dvs λv har urbilden λu,dvsλv V (F ). Vi har därmed visat att V (F ) är ett underrum i W. 3. Låt u = x e + x 2 e x n e n vara en godtycklig vektor i V med bilden v under F, dvs F (u) =v. Dågäller att v = F (u) =F (x e + x 2 e x n e n )=x F (e )+x 2 F (e 2 )+ + x n F (e n ), dvs varje v V (F ) är en linjärkombination av mängden {F (e ),...,F(e n )}. Vi har alltså visat att V (F )=[F(e ),F(e 2 ),...,F(e n )].

6 6.7 Nollrum, värderum och dimensionssatsen 9 Vi har i exemplen ovan också sett att det finns ett samband mellan dim N(F )ochdimv (F ) och nästa sats bekräftar detta. Sats Dimensionssatsen: Antag att F : V W är linjär. Då gäller att dim N(F )+dimv (F )=dimv. Bevis: Antag att dim V = n och att {e, e 2,...,e n } är en bas i V. Antag också att dim N(F )=k och att {e, e 2,...,e k } är en bas i N(F ). Vi vill visa att Enligt Sats 6.43, så gäller att Eftersom följer att dim V (F )=dimv dim N(F ). V (F )=[F (e ),F(e 2 ),...,F(e n )]. F (e )=F (e 2 )= = F (e k )=0, V (F )=[F (e k+ ),F(e k+2 ),...,F(e n )]. (6.2) Vi visar nu att mängden i (6.2) som spänner upp V (F ) är linjärt oberoende, ty λ k+ F (e k+ )+λ k+2 F (e k+2 )+ +λ n F (e n )=0 F (λ k+ e k+ +λ k+2 e k+2 + +λ n e n )=0, dvs e k+, e k+2,...,e n N(F ), vilket är en motsägelse. Mängden av (n k) vektorer {F (e k+ ),F(e k+2 ),...,F(e n )} i (6.2) som spänner upp V (F ) är alltså linjärt oberoende. Därmed är dim V (F )=n k =dimv dim N(F ), dvs dim N(F )+dimv (F )=dimv.

7 92 6 LINJÄRA AVBILDNINGAR Exempel Den linjära avbildningen F har i standardbasen matrisen A =. 0 0 Bestäm en bas för underrummen N(F ), V (F )ochn(f ) V (F ). Avgör också om (, 4, 2) t V (F )? Lösning:. Nollrummet N(F ) är alla u = ex som under F avbildas på nollvektorn, dvs Vi löser ekvationssystemet F (u) =0 F (ex) =0 eax = 0 AX = 0. AX = X = t Alltså spänns N(F ) endast upp av vektorn u = e(,, 0) t,dvsn(f )=[(,, 0) t ] är en rät linje geonm origo med dim N(F ) =. 2. Dimensionssatsen dim N(F )+dimv (F )=dimr 3 ger att dim V (F ) = 2. Eftersom V (F )spänns upp av bilden av basvektorerna, V (F )=[F (e ),F(e 2 ),F(e 3 )] måste en bildvektor bort då den är linjärkombination i de övriga. Det får bli F (e 2 ) som är parallell med F (e ). Alltså har vi att V (F )=[F (e ),F(e 3 )] = [(,, 0) t, (,, ) t ] som är ett plan genom origo. Normalen till V (F ) ges av (,, 0) t (,, ) t =(,, 0) t, så att V (F )=[(,, 0) t, (,, ) t ]={u R 3 : x x 2 =0} Snittmängden N(F ) V (F ) består av alla vektorer som ligger i både N(F )ochv (F ). Eftersom N(F )=[(,, 0) t ]och(,, 0) t V (F ), så är N(F ) V (F )=[(,, 0) t ]. 4. Vektorn (, 4, 2) t / V (F ) ty den satisfierar inte ekvationen x x 2 = 0.

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 66 6 LINJÄRA AVBILDNINGAR 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) =a(x + y) =ax + ay = f(x)+f(y)..

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) = a(x + y) = ax + ay = f(x) + f(y). 2. f(λx) = a(λx) = aλx

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är KTH, Matematik Övningar till Kapitel 5.5-5.6, 6.6 och 8.3-8.6. Matrisframställningen A γ av en rotation R γ : R R med vinkeln γ är ( cos(γ sin(γ. sin(γ cos(γ Då R α+β = R α R β, är matrisen ( cos(α + β

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer.

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer. Ortogonalitet Man kan tala om vinkel mellan vektorer.. Skalär produkt Vi definierar längden (eller normen) av en vektor som ett reellt tal 0 (Se boken avsnitt.). Vi definierar skalär produkt (Inner product),

Läs mer

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e . Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Föreläsning 3, Linjär algebra IT VT Skalärprodukt

Föreläsning 3, Linjär algebra IT VT Skalärprodukt Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

Rotation Rotation 187

Rotation Rotation 187 6. Rotation 87 6.. Rotation Vi har tidigare i Exempel 6.5 isat hur man roterar rummets ektorer kring en axel parallell med en a basektorerna. Nu är i redo att besara frågan om hur man rider kring en godtycklig

Läs mer

LINJÄR ALGEBRA II LEKTION 8+9

LINJÄR ALGEBRA II LEKTION 8+9 LINJÄR ALGEBRA II LEKTION 8+9 JOHAN ASPLUND Innehåll. Kvadratiska former. Allmänna linjära avbildningar Matriser för allmänna linjära avbildningar. Uppgifter Extrauppgift från tenta Extrauppgift från tenta

Läs mer

Problemsamling i Linjär Algebra II. Erik Darpö

Problemsamling i Linjär Algebra II. Erik Darpö Problemsamling i Linjär Algebra II Erik Darpö ii Notation Inklusion Samma som A B Matriserna A och B är radekvivalenta I n Enhetsmatrisen av storlek n n R n Vektorrummet av alla kolonnvektorer av storlek

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare

Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare Per Alexandersson February 27, 2013 Abstract Här är läsanvisningar samt några kompletterande uppgifter till materialet i kursboken

Läs mer

x 1 x 2 T (X) = T ( x 3 x 4 x 5

x 1 x 2 T (X) = T ( x 3 x 4 x 5 Lördagen 6 Nu vill vi fokusera på linjära avbildningar från vektorrum W Om T : R n R n är en linjär avbildning, och W R n ett vektorrum, då har vi en inducerad avbildning T W : W R m Och denna avbildning

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m.

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m. Fredagen 006 Avbildningar Låt A vara matrisen () = 0 0 Till varje vektor X i R får vi vid matrismultiplikationen AX en vektor i R Mera explicit, om X = x x x x är en given punkt i R, då får vi punkten

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Studiehandledning till linjär algebra Avsnitt 3

Studiehandledning till linjär algebra Avsnitt 3 Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 3 Kapitel 4, 9.2 och 5 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.) Välkommen

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

LINJÄR ALGEBRA. {x M : P (x)} = {x : P (x)}, TOMAS SJÖDIN. k j=1 Ofta betecknas mängder på följande sätt:

LINJÄR ALGEBRA. {x M : P (x)} = {x : P (x)}, TOMAS SJÖDIN. k j=1 Ofta betecknas mängder på följande sätt: LINJÄR ALGEBRA TOMAS SJÖDIN Innehåll 0 Notation 1 1 Linjära Ekvationssystem 2 2 Geometriska vektorer, rummen R n och M n 1 3 3 Skalärprodukt, Vektorprodukt, Volymprodukt 7 4 Linjer och plan 10 5 Matriser

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

LINJÄR ALGEBRA TOMAS SJÖDIN

LINJÄR ALGEBRA TOMAS SJÖDIN LINJÄR ALGEBRA TOMAS SJÖDIN Innehåll 0 Notation 2 1 Linjära Ekvationssystem 2 2 Geometriska vektorer, rummen R n och M n 1 4 21 Rummen R n och M n 1 7 22 Skalärprodukt 8 3 Linjer 11 31 Linjer på parameterform

Läs mer

Mer om geometriska transformationer

Mer om geometriska transformationer CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3.

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3. Linjära avbildningar Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om F (v +v ) = F (v)+f (v ) och F (cv) = cf (v) för alla v, v V och alla skalärer c. EX. Speglingar, rotationer,

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

Linjär algebra och geometri I

Linjär algebra och geometri I UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 6 Institutionen för matematik KTH 11 november 2016 Feedback Innan vi börjar: En liten feedback-övning Vad menas med rangen av en matris? Vad menas med ett homogent linjärt ekvationssystem?

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Minsta kvadratmetoden

Minsta kvadratmetoden Minsta kvadratmetoden där Överbestämda ekvationssystem Det är lämpligt att uppfatta matrisen A som bestående av n kolonnvektorer: A a a a n a a a n a n a n a nn a j a j a nj a a a n j n Då kan vi skriva

Läs mer

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar.

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar. TM-Matematik Mikael Forsberg 7 Linjär algebra/matematik för ingenjörer maa, maa 5 6 Skrivtid: 9:-:. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara fullständiga och lätta

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Projektion av träningsdata på aktuell underrum av dim 1. Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts.

Projektion av träningsdata på aktuell underrum av dim 1. Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Projektion av träningsdata på aktuell underrum av dim Föreläsning : Klassificering, minsta kvadratproblem, SVD, forts. Berkant Savas Tillämpad matematik i natur och teknikvetenskap, TNA Institutionen för

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

REPETITION. [F ] = a. a m1... a mn Sådan att [F (v)] = [F ][v].

REPETITION. [F ] = a. a m1... a mn Sådan att [F (v)] = [F ][v]. REPETITION (1) Låt F : R n R m vara en linjär avbildning. Då är F (x 1,..., x n ) = (f 1 (x 1,..., x n ),..., f m (x 1,..., x n )) där f 1 (x 1,..., x n ) = a 11 x 1 +... + a 1n x n,..., f m (x 1,...,

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer