SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

Storlek: px
Starta visningen från sidan:

Download "SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A"

Transkript

1 SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3 9x 4 =, x + 2x 2 + 3x 3 + 7x 4 = 3. (3) (b) Bestäm villkoret på a, b och c för att det ska finnas lösningar till ekvationssystemet Lösning x + 4x 2 + 2x 3 + 2x 4 = a, 3x + 6x 2 x 3 9x 4 = b, x + 2x 2 + 3x 3 + 7x 4 = c. a) Vi använder Gauss-Jordanelimination på totalmatrisen för systemet, dvs 2 r r 2 3r 2 2 r r r 3 r r 3 + r 2 2 r r 2 r 2 r Vi har två fria variabler eftersom det saknas ledande etta i andra och fjärde kolonnen. För dessa variabler får vi införa parametrar,x 2 = s och x 4 = t. Sedan kan vi använda första ekvationen för att lösa ut x och x = 3 2x 2 + 2x 4 = 3 2s + 2t och den andra ekvationen för att lösa ut x 3 som Alltså ges lösningsmängden av x 3 = 2 3x 4 = 2 3t. (x, x 2, x 3, x 4 ) = (3,, 2, ) + s( 2,,, ) + t(2,, 3, ) ()

2 2 SF624 Algebra och geometri - Modelltentamenentamen där s och t är reella parametrar. b) För att se vilka högerled som fungerar behöver vi utföra samma radoperationer på (a, b, c) t. Det finns lösingar till systemet precis då den tredje raden blir helt noll när vänsterledet blir noll. a b c r 2 r 2 3 r 2 r 3 r 2 a 2 b + 3a 4 8 c + b a 3a a 2 b 3 a 2 c a 2 = a 2 b + 3a 4 8 c + b 5a 2 4 Villkoret för att det ska finnas lösningar är alltså att vilket också kan skrivas som att c + 2 b 5 4 a =, 5a 2b 4c =. r r 4 2 r 3 + r 2 2 Svar: a) Lösningsmängden ges av (x, x 2, x 3, x 4 ) = (3,, 2, )+s( 2,,, )+t(2,, 3, ), där s och t är reella parametrar. b) Villkoret för att det ska finnas lösningar ges av 5a 2b 4c =.

3 SF624 Algebra och geometri - Modelltentamen 3 (2) Ett områdeω i planet R 2 avbildas genom den linjära avbildningen T med standardmatris ( ) 4 A = på parallellogrammen med hörn i punkterna (, ), (5, ), (4, 2) och (9, 3). (a) Bestäm området Ω. (Använd egenskaperna hos linjära avbildningar, exempelvis att linjestycken avbildas på linjestycken.) (3) (b) Jämför arean av Ω med arean av bilden T(Ω). () y x FIGUR. Bilden, T(Ω), av området Ω under avbildningen T. Lösning. a) Eftersom linjestycken avbildas på linjestycken genom en linjär avbildning räcker det att ta reda på var hörnen avbildas. En linjär avbildning avbildar nollvektorn på nollvektorn. Dessutom är (9, 3) summan av vektorerna (5, ) och (4, 2) i en parallellogram. Det innebär att vi bara beöver ta reda på vad urbilderna av (5, ) och (4, 2) är. Vi ställer upp detta som ett ekvationssystem med två högerled och får då totalmatrisen ( ) och med Gausselimination får vi ( ) [ ] r ( 2 ) r 2 [ + r r + 4 r ] 3 2 ( ) r Vi har kommit fram till att ( ) ( ) 3 5 T = 2 och T ( 4 2 ) ( ) 4 = 2 Alltså måsteω ges av parallellogrammen med hörn i punktern (, ), (3, 2), (4, 2) och (3, 2) + (4, 2) = (7, 4).

4 4 SF624 Algebra och geometri - Modelltentamenentamen Vi kan också lösa uppgiften genom att bestämma matrisen för den omvända avbildningen, dvs matrisen för T, som är inversmatrisen av A. Med hjälp av kofaktorerna kan vi skriva upp A som A = ( ) 4 = ( ) 4 det A 3 eftersom det(a) = ( ) 4 ( ) = + 4 = 3 och vi kan sedan beräkna ( ) 5 T = ( ) ( ) 4 5 = ( ) ( ) = och T ( 4 2 ) = 3 ( 4 ) ( 2 2 ) = 3 y ( ) = ( 4 2 ). x FIGUR 2. Det ursprungliga området Ω. b) Arean av parallellogrammen T(Ω) kan beräknas som beloppet av determinanten av matrisen med vektorerna (5, ) och (4, 2) som kolonnvektorer. Arean är alltså ( ) 5 4 det = = 4 = 6 2 areaenheter. Matrisen A har determinant 3 och därmed förstoras arean med en faktor 3 genom T, vilket vi också kan se genom att arean av paralellogrammen Ω ges av determinanten ( ) 3 4 det = 3 ( 2) 4 ( 2) = = Svar: a) Området Ω är parallellogrammen med hörn i (, ), (3, 2), (4, 2) och (7, 4). b) Området T(Ω) har area 6 areaenheter och är tre gånger så stort somω i och med att determinanten för A är 3.

5 SF624 Algebra och geometri - Modelltentamen 5 (3) Den vinkelräta projektionen på planet som ges av ekvationen x 2y +3z = är en linjär avbildning och kan därmed beskrivas med hjälp av en matris. Bestäm standardmatrisen för denna projektion genom att se på hur den verkar på standardbasvektorerna. (4) Lösning. En normalvektor för planet ges av koefficienterna i ekvationen och vi får n = (, 2, 3). Vi kan projicera de tre standardbasvektorerna på planet genom att dra bort projektionen på normalen. När vi projicerar på normalen får vi Proj n e = e n n n n = (,, )t (, 2, 3) t (, 2, 3) t (, 2, 3) t(, 2, 3)t = (, 2, 3)t 4 Proj n e 2 = e 2 n n n n = (,, )t (, 2, 3) t (, 2, 3) t (, 2, 3) t(, 2, 3)t = 2 (, 2, 3)t 4 och Proj n e 3 = e 3 n n n n = (,, )t (, 2, 3) t (, 2, 3) t (, 2, 3) t(, 2, 3)t = 3 (, 2, 3)t 4 Om vi nu låter T vara projektionen på planet får vi att och T(e ) = e Proj n e = (,, ) t 4 (, 2, 3)t = (3, 2, 3)t 4 T(e 2 ) = e 2 Proj n e 2 = (,, ) t 2 4 (, 2, 3)t = (2,, 6)t 4 T(e 3 ) = e 3 Proj n e 3 = (,, ) t 3 4 (, 2, 3)t = 4 ( 3, 6, 5)t. Alltså ges matrisen för projektionen av A = Svar: Matrisen för projektionen ges av A =

6 6 SF624 Algebra och geometri - Modelltentamenentamen DEL B (4) Betrakta matrisen A = (a) Bestäm en bas för radrummet till A med hjälp av Gausselimination. (3) (b) Använd relationen mellan dimensionerna för radrum och nollrum 2 för att med hjälp av resultatet från 4a också bestämma dimensionen av nollrummet till A. () Lösning. a) När vi utför radoperationer i Gausselimination ändras inte radrummet i matrisen. När vi väl har kommit till trappstegsform vet vi att de nollskilda raderna är linjärt oberoende och de utgör dämed en bas för radrummet. 2 8 r r 2 2r r 3 r r 4 2r r 4 r 2 r r 2 r 4 Därmed utgör de två vektorerna (, 2,, 8) och (,,, 4) en bas för nollrummet till A. b) Summan av dimensionerna av nollrum och radrum är lika med antalet kolonner, eftersom nollrummets dimension ges av antalet kolonner som saknar ledande ettor i trappstegsformen. Eftersom radrummet har dimension 2 får vi därmed att nollrummet dimension 4 2 = 2. Svar: a) En bas för radrummet ges av vektorerna (, 2,, 8) och (,,, 4). b) Nollrummets dimension är 2. Radrummet är det delrum som spänns upp av radvektorerna i matrisen. 2 Nollrummet till A är lösningsmängden till ekvationen Ax =.

7 SF624 Algebra och geometri - Modelltentamen 7 (5) En triangulär skärm ska sättas upp i ett hörn av ett rum där väggar och tak är vinkelräta mot varandra. Använd vektorprodukten 3 för att bestämma ett uttryck för skärmens area om skärmens tre hörnpunkter har avstånd a cm, b cm, respektive c cm från hörnet. (4) FIGUR 3. Skärmens placering vid taket i ett av rummets hörn. Lösning. Vi inför ett rätvinkligt koordinatsystem med rummets hörn som origo och de positiva axlarna utmed skärninge av väggar och tak. Därmed får vi att skärmens hörnpunkter får koordinater (a,, ), (, b, ) och (,, c). För att beräkna skärmens area kan vi använda vektorprodukten eftersom längden av vektorn u v är arean av den parallellogram som spänns upp av u och v. Triangelns area blir hälften av parallellogrammens area. Vi kan beräkna vektorer utefter triangelns sidor som u = (, b, ) (a,, ) = ( a, b, ) och v = (,, c) (a,, ) = ( a,, b). Vi beräknar kryssprodukten som u v = ( a, b, ) ( a,, c) = (b c, ( a) ( a) c, ( a) b ( a)) = (bc, ac, ab). Det är längden av denna vektor som ger arean av parallellogrammen och vi får därmed att triangelns area är 2 u v cm2 = 2 (bc, ac, ab) cm2 = b2 c a 2 c 2 + a 2 b 2 cm 2. Svar: Skärmens area är 2 b2 c 2 + a 2 c 2 + a 2 b 2 cm 2. 3 Vektorprodukten kallas också för kryssprodukt.

8 8 SF624 Algebra och geometri - Modelltentamenentamen (6) (a) Förklara varför det i allmänhet är enkelt att bestämma egenvärdena för övertriangulära matriser. () (b) Bestäm om möjligt en basbytesmatris P som diagonaliserar den övertriangulära matrisen A = Lösning. a) I och med att determinanten för en övertriangulär matris ges av produkten av diagonalelementen kommer det karaktäristiska polynomet, det(a λi) att vara lika med (a λ)(a 22 λ) (a nn λ) om A är en övertriangulär n n-matris. Egenvärdena som är nollställena till det karaktäristiska polynomet blir därmed lika med diagonalelementen, a, a 22,...,a nn. b) För att finna en basbytesmatris som diagonaliserar P behöver vi finna egenvektorerna. Vi har redan hittat egenvärdena som enligt del a) är lika med, 4 och 6. För att finna egenvektorerna behöver vi lösa de homogena ekvationssystemen som svarar mot (A λi)x = för dessa egenvärden. Vi börjar med λ = och får med Gausselimination (3) r r r r r 2r 2 r 3 r vilket ger lösningen (x, x 2, x 3 ) = t(,, ) eftersom x 2 = x 3 = och vi kan låte x = t för en reell parameter t. För λ = 4 får vi r 5 r 2 r r och lösningen ges av (x, x 2, x 3 ) = t(2, 3, ) eftersom x 3 = och vi kan låtax 2 = 3t för en reell parameter t. Till slut får vi för λ = 6 5 r 2 r 2 r r r 2 r 2 r och lösningen ges av (x, x 2, x 3 ) = t(6, 25, ) eftersom vi kan låta x 3 = t för en reell parameter t. Vi kan få den sökta basbytesmatrisen genom att välja egenvektorerna som kolonner och kan därmed välja

9 SF624 Algebra och geometri - Modelltentamen 9 P = Det går att kontrollera att räkningarna stämmer genom att invertera P och beräkna produkten P AP och se att det blir en diagonalmatris med elementen, 4 och 6 på diagonalen. Vi får P = 3 P AP = 2 3 Svar: b) Matrisen P = = = 4 6 är en basbytesmatris som diagonaliserar A. Var god vänd!

10 SF624 Algebra och geometri - Modelltentamenentamen DEL C (7) När vi med den minsta-kvadratmetoden försöker hitta den ellips med ekvation ax 2 + bxy + cy 2 = () (2) som bäst passar till punkterna (2, 2), ( 2, ), (, 2) och (2, ) leds vi till ekvationen a b = c som har lösningen a =,, b =,5 och c =,3. (a) Utför beräkningarna som leder fram till ekvationen (2). (Gausseliminationen av ekvationssystemet (2) behöver inte utföras.) (3) (b) Förklara vad som menas med att lösningen a =,, b =,5 och c =,3 är bäst i minsta-kvadratmening. () Lösning. a) Vi ställer först upp de ekvationer som skulle vara uppfyllda om alla fyra punkter låg på ellipsen. Då skulle vi ha a b c 2 2 =, a ( 2) 2 + b ( 2) + c 2 =, a ( ) 2 + b ( ) ( 2) + c ( 2) 2 =, a b 2 ( ) + c ( ) 2 =. dvs uttryckt som matrisekvation Normalekvationen ges nu av dvs a b =. c a b = c a b = c

11 SF624 Algebra och geometri - Modelltentamen b) Att lösningen är bäst i minsta-kvadratmening betyder att skillnaden mellan högerled och vänsterled i den ursprungliga ekvationen är vinkelrät mot det rum som spänns upp av kolonnerna. Därmed är längden av denna vektor så liten som möjligt, vilket betyder att summan av kvadraterna av avvikelserna är så liten som möjligt. (I det här fallet ligger de fyra punkterna på en ellips, så skillnaden mellan högerled och vänsterled är (,,, ) när a =,, b =,5 och c =,3 och summan av kvadraterna är därmed också.)

12 2 SF624 Algebra och geometri - Modelltentamenentamen (8) Låt Q a vara den kvadratiska formen som ges av Q a (x, y, z) = a(x 2 + y 2 + z 2 ) + 2xy + 2yz där a är en reell parameter. (a) Bestäm för vilka värden på parametern a som Q a är positivt definit. 4 (3) (b) Låta vara det minsta värdet för vilket Q a är positivt semidefinit. 5 Bestäm det största värde Q a antar på enhetssfären x 2 + y 2 + z 2 =. () Lösning. a) Den symmetriska matrisen svarar mot Q a (x, y, z) = a(x 2 + y 2 + z 2 ) + 2xy + 2yz är A = a a a För att se på omq a är positivt definit behöver vi se om alla egenvärden är positiva. Vi får egenvärdena som lösningarna till den karaktäristiska ekvationen det(a λi) =. det a λ a λ ( a λ ) ( ) a λ = (a λ) det det a λ a λ = (a λ)((a λ) 2 ) ) = (a λ)((a λ) 2 2) Därmed har vi egenvärdena λ = a, λ = a + 2 och λ = a 2. Det minsta egenvärdet är a 2 och för att detta ska vara positivt krävs att a > 2. b) Om a < 2 finns ett negativt egenvärde, så a = 2 är det minsta värde på a som gör att a är positivt semidefinit. Vi har då att det största egenvärdet är λ = 2 2 och det minsta λ = 2 2 =. Därmed gäller att Q a (x, y, z) 2 2 för alla x, y, z med x 2 + y 2 + z 2 =. Om vi har ordnat egenvärdena i storleksordning λ λ 2 λ 3 får vi efter diagonalisering att Q a (x, y, z) = λ x 2 + λ y 2 + λ 3 z 2 λ 3 (x 2 + y 2 + z 2 ) = λ 3 för punkter på enhetssfären. Det största värdet uppnås när (x, y, z) är en egenvektor med egenvärde 2 2. Svar: a) Q a är positivt definit om a > 2. b) Det största värdet Q 2 (x, y, z) antar på enhetssfären är Q är positivt definit om Q(x, y, z) > för alla (x, y, z) (,, ). 5 Q är positivt semidefinit om Q(x, y, z) för alla (x, y, z).

13 SF624 Algebra och geometri - Modelltentamen 3 (9) För varje naturligt tal n 2 kan vi se på det delrum V av R n som ges av lösningarna till ekvationen x + x x n =. (a) Visa att vektorerna f = e e 2, f 2 = e 2 e 3,...,f n = e n e n utgör en bas för V om e, e 2,...,e n är standardbasvektorerna för R n. (2) (b) Använd Gram-Schmidts metod för att utifrån den givna basen för V skapa en ortogonal bas för V med avseende på den euklidiska inre produkten pår n. (2) Lösning. a) För att bestämma dimensionen för V kan vi se att matrisen som beskriver ekvationssystemet för V består av en enda nollskild rad. Detta betyder att radrummet har dimension och eftersom antalet kolonner är n kommer nollrummet, dvs V, att ha dimension n. Alla de n vektorerna f, f 2,...,f n ligger i V eftersom de har en koordinat som är, en som är och resten är noll. Därmed återstår bara att visa att f, f 2,...,f n är linjärt oberoende. Antag att a f + a 2 f a n f n =. Vi får då att = a (e e 2 ) + a 2 (e 2 e 3 ) + + a n (e n e n ) = a e + (a 2 a )e (a n a n 2 )e n a n e n. Eftersom e, e 2,..., e n utgör en bas för R n innebär detta att a = a 2 a = = a n a n 2 = a n =. Den första ekvationen innebär att a = och när vi sätter in detta i den andra får vi a 2 =. Till slut får vi att a = a 2 = = a n = och vi drar slutsatsen att f, f 2,...,f n är linjärt oberoende och därmed bildar en bas för V. b) Vi ska bygga upp en ortogonal bas för V som består av vektorer g, g 2,...,g n. Det första steget är att låta g = f = e e 2. Vi bildar sedan nästa vektor genom att ta f 2 oh dra bort projektionen av f 2 på e och vi får då g 2 = f 2 Proj g f 2 = e 2 e 3 (e 2 e 3 ) (e e 2 ) (e (e e 2 ) (e e 2 ) e 2 ) = e 2 e 3 (e 2 e 2 ) = e 2 + e 2 2 e 3. Vi kan gå vidare ett steg och får då eftersom f 3 = e 3 e 4 att f 3 g = och f 3 g 2 =. Vidare är g 2 g 2 = + + = 3 vilket ger g 3 = f 3 Proj g f 3 Proj g2 f 3 = f 3 3/2 g 2 = e 3 e ( 2 e + 2 e 2 e 3 ) = 3 e + 3 e e 3 e 4 Vi kan nu ana ett mönster och kan försöka visa att g i = i e + i e i e i e i+, för i =, 2,..., n. Vi ser att en vektor v = (x, x 2,...,x n ) är ortogonal mot f i precis om v f i = x i x i+ =, dvs om i-koordinaten är lika med (i + )-koordinaten. Därmed får vi att vektorn g i som ska vara ortogonal mot W i = span{g, g 2,..., g i } =

14 4 SF624 Algebra och geometri - Modelltentamenentamen span{f, f 2,..., f i } måste ha alla de första i koorinaterna lika. Den (i + )- koordinaten måste vara lika med (i + )-koordinaten för f i eftersom alla vektorer i W i har (i + )-koordinat noll. Därmed ser vi att g i = k(e + e e i ) e i+ för något talk. Eftersom g i ska ligga i delrummet V måste summan av koordinaterna vara noll, vilket ger k i =, dvs k = /i. Alltså har vi visat att g i = i e + i e i e i e i+, för i =, 2,..., n. Svar: b) Den ortogonala bas G = {g, g 2,...,g n } som fås via Gram-Schmidt metod ges av g i = i e + i e i e i e i+ för i =, 2,..., n.

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 20 februari 2007 FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Projektuppgift Syfte: att träna på att skriva ett lite större Matlabprogram med relevans för byggnadsmekanik.

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

LARS SVENSSON OCH ERIC NORDENSTAM

LARS SVENSSON OCH ERIC NORDENSTAM KORT SAMMANFATTNING AV FLERVARIABELKURSEN LARS SVENSSON OCH ERIC NORENSTAM 1 Normer på vektorrum En avbildning V x x R från ett vektorrum över R (eller C) kallas en norm om λ R (eller C) x, y V (1) λx

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

En smula tropisk geometrié

En smula tropisk geometrié Normat 59:1, 1 21 (2011) 1 En smula tropisk geometrié Erwan Brugallé Université Pierre et Marie Curie, Paris 6 175 rue du Chevaleret, 75 013 Paris, France brugalle@math.jussieu.fr Vad är det egentligen

Läs mer

Per Jönsson Symbolisk matematik med MATLAB

Per Jönsson Symbolisk matematik med MATLAB Per Jönsson Symbolisk matematik med MATLAB Malmö 2010 2 Per Jönsson Centrum för Teknikstudier Malmö högskola 205 06 Malmö email: per.jonsson@mah.se hemsida: http://homeweb.mah.se/~tspejo/index.htm c Per

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 4, 94 Årgång 4, 94 Första häftet 47. Om en triangels hörn speglas i motstående sidor, bilda spegelbilderna en liksidig triangel. Beräkna den ursprungliga triangelns vinklar. 48. Att konstruera

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Matematiska tillämpningar - en exempelsamling till kurserna Matematisk analys och Linjär algebra

Matematiska tillämpningar - en exempelsamling till kurserna Matematisk analys och Linjär algebra Matematiska tillämpningar - en exempelsamling till kurserna Matematisk analys och Linjär algebra Sammanställd av Fredrik Abrahamsson Innehåll Matematisk analys 2. Formen av en konservburk..............................

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Vad kan 90 gram räknare göra?

Vad kan 90 gram räknare göra? NR 1-2015 21:a årgången Den nya ClassWizserien. Casio lanserar de nya tekniska räknarna FX-82EX, FX-85EX och FX-991EX ur den nya ClassWiz-serien. De erbjuder olika nyheter: högupplösta displayer, snabbbare

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C Vecka 1 matte D del C handlar om olika typer av integraler. Metoden går tillbaka till antiken; genom triangulering kan man beräkna arean av oregelbundna polygoner. Har men en figur med krokiga begränsningslinjer

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Matematisk Grundkurs

Matematisk Grundkurs LINKÖPINGS UNIVERSITET Matematisk Grundkurs för högskoleingenjörer inom byggnadsteknik Peter Holgersson Institutionen för teknik och naturvetenskap Sida 2 Syfte och mål Kursen syftar till att bidra till

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Matematiska modeller

Matematiska modeller Matematiska modeller Kompendium Lektor: Yury V. Shestopalov e-post: youri.shestopalov@kau.se Tel. 054-700856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 Contents Inledning 5. Descartes

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. . G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande tre (fyra) delområden: MGF Förberedande mätning och geometri

Läs mer

Högskoleverket. Delprov NOG 2005-04-09

Högskoleverket. Delprov NOG 2005-04-09 Högskoleverket Delprov NOG 2005-04-09 1. Eva, Pia och Linus köpte totalt 18 frukter. Hur många frukter köpte Eva? (1) Eva och Linus köpte sammanlagt dubbelt så många frukter som Pia. (2) Pia köpte tre

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Liten introduktionsguide för nybörjare GeoGebra 0 Introduktionsövningar till GeoGebra När man startar GeoGebra är det

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

Kapitel Grafer för koniska sektioner

Kapitel Grafer för koniska sektioner Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före

Läs mer

Projekt i bildanalys Trafikövervakning

Projekt i bildanalys Trafikövervakning Projekt i danalys Trafikövervakning F 99 F 00 Handledare : Håkan Ardö Hösten 3 vid Lunds Tekniska Högskola Abstract Using traffic surveillance cameras the authorities can get information about the traffic

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet Numeriska metoder Kompendiet Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 054-7001856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 1 Innehåll 1 Grundbegrepp av numeriska

Läs mer

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012 Överbryggningskurs i matematik del I Teknik och Samhälle 0 Malmö 0 Förord och studietips Föreliggande kompendium i två delar är en överbryggning mellan gymnasiets och högskolans matematikkurser. Målet

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur lena Alfredsson Kajsa Bråting Patrik erion hans heikne Matematik 5000 Kurs 2b Grön lärobok natur & Kultur NATUR & KULTUR Bo 27 323, 02 54 Stockholm Kundtjänst: Tel 08-453 85 00, order@nok.se Redaktion:

Läs mer

TNK047 OPTIMERING OCH SYSTEMANALYS

TNK047 OPTIMERING OCH SYSTEMANALYS TNK047 OPTIMERING OCH SYSTEMANALYS Datum: 18 december 2006 Tid: 14 18 Hjälpmedel: Ett A4-blad med egna anteckningar (båda sidor) samt miniräknare. Antal uppgifter: ; Vardera uppgift kan ge p. Poängkrav:

Läs mer