Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Storlek: px
Starta visningen från sidan:

Download "Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)"

Transkript

1 Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = t Skriv om funktionen med basen e istället för.04. Derivera denna funktion tln.04 b(t) = 0000 e b tln.04 (t) = 0000 ln.04e Hur ska man tolka b (4)? Först beräknar vi dess värde b (4) = 0000 ln.04e 4ln Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Figur : Av grafen at döma skulle man kunna tro att beloppets utveckling b(x) är linjär, men så är icke fallet. Möjligtvis kan man se det på b (x) som stiger lite, lite grann. Om b(x) hade varit linjär hade b (x) varit konstant eller hur? Vi kan säga att alla funktioner som vi sysslar med kan tyckas vara linjära, bara man tittar på ett tillräckligt litet intervall. För att skingra alla tvivel tittar vi på b(t) i ett större intervall, hela 00 år (se fig ) Håkan Strömberg KTH Syd

2 Figur : Grafen nedan visar ett så kallad kastparabel där utkastet skett från origo. Efter att det utkastade föremålet nått sin högsta punkt dalar det och slår ner någon stans kring 50 meter Figur 3: Parabelns funktion är Vi ska besvara följande frågor f(x) = x 5 + 4x 5 a) Var slår föremålet ned? b) Efter hur många meter når föremålet sin högsta punkt och hur hög är denna? c) Vilket utkastvinkel har föremålet? Den första frågan är lätt att besvara. Vi behöver bara lösa ekvationen f(x) = 0 x 5 + 4x 5 = 0 x ( 4 5 x 5) = 0 Vi har ett faktoriserat andragradsuttryck, där en rot är x = 0. Den andra får vi genom att lösa ekvationen 4 x = = x 5 x = x = 50 Håkan Strömberg KTH Syd

3 Föremålet slår alltså ned efter exakt 50 meter. För att ta reda på funktionens maxpunkt (för det är helt tydligt en maxpunkt vi ser), deriverar vi funktionen Vi studerar derivatans graf f (x) = 4x Figur 4: Vi sera att derivatan är > 0 (positiv) från x = 0 fram till ungefär x = 5 då den är exakt 0. Därefter blir derivatan < 0 (negativ), fram till att föremålet slår i marken. Om vi vill ta reda på exakt var f (x) = 0 löser vi motsvarande ekvation: 4x = = 4x 5 x = x = 5 Då x = 5 vet vi att funktionen nått sitt maximum. För att ta reda på hur högt det är bestämmer vi f(5) f(5) = = 0 5 Vi vet nu att maxpunkten är (5, 0). När funktionen som ska undersökas är mer komplicerad brukar man skissa kurvan på följande sätt x x < 5 x = 5 x > 5 f (x) + 0 f(x) ր max ց Utkastvinkel har förstås med f (0) = 4 5 att göra. Tangentens k-värde i punkten Håkan Strömberg 3 KTH Syd

4 (0, 0). Om vi vill ha svaret i grader skriver vi Ett samband vi inte nämnt tidigare. v = arctan Ett päron föll från sin gren ned mot marken. Hur många meter päronet fallit efter en given tid i sekunder, kan vi bestämma med funktionen 9.8 t s(t) = Päronet nådde marken efter sekund. Vilken hastighet hade päronet när det nådde marken? Lösning: Vi deriverar s(t) = 9.8t och får s (t) = 9.8t Denna funktion ger päronets hastighet efter t sekunder. s() = 9.8 meter/sekund ger oss svaret. Grafen till följande funktioner finns att beskåda här nedan. Vilken är vilken? A) f(x) = x 3 B) f(x) = x(x + )(x ) C) f(x) = x(x + )(x ) D) f(x) = x ) ) ) Lösning: Vi klarar detta då vet vilka funktioner som återges som grafer. Annars skulle man aldrig med säkerhet kunna bestämma funktionens utseende. 4) A) hör ihop med ) B) hör ihop med 4) C) hör ihop med ) D) hör ihop med 3) Håkan Strömberg 4 KTH Syd

5 3 Här har vi plottat de tre funktionerna (figur 5) Vilken är vilken? ) f(x) = x 4 ) g(x) = x 3) h(x) = x 6 Figur 5: Lösning: För att klara uppgiften måste man ha klart för sig vad som är störst f(0.), g(0.) eller h(0.). ) hör ihop med B ) hör ihop med C 3) hör ihop med A 4 Värdeminskningen hos en dator antar modellen f(t) = t där f(t) är datorns värde efter t år. Efter hur lång tid efter inköpet tappar datorn värdet 000 kr/år Lösning: Vi startar med att skriva om funktionen med basen e, så att vi enklare kan derivera. tln 0.7 f(t) = 8500 e Nu deriverar vi f tln 0.7 (x) = 8500 ln0.7 e Vi ska nu lösa ekvationen f (t) = ln0.7 e tln 0.7 = 000 e tln 0.7 = ln0.7 lne tln 0.7 = ln ln0.7 t = t 3. ln ln 0.7 ln0.7 Svar: Efter 3. år är värdeminskningshastigheten 000 kr/år Håkan Strömberg 5 KTH Syd

6 5 Lös ekvationen Lösning: 5e x = 00 Svar: x = 6 5e x = 00 e x = 0 ln ( e x ) = ln0 x = ln0 x = ln0 x = ln0 x = ln 400 x 6 6 Antal åskådare som anlänt till matchen som börjar vid t = 0 följer modellen f(t) = 0000e 3t 50 a) Hur många åskådare kom till matchen? b) Hur många åskådare hade kommit timme för matchstart? c) Vid vilken tid hade hälften av åskådarna anlänt? d) Hur många personer/timmen passerade vändkorsen precis vid matchstart? Lösning: a) Vid t = 0 får vi b) Vid t = får vi c) Vi löser ekvationen f(t) = 9950 f(0) = 0000e = 9950 f( ) = 0000e 3 ( ) e 3t 50 = 9975 e 3t = 0000 ln ( ( ) e 3t) = ln 0000 ( ) t = ln 0000 t = ln( ) t 0.3 Håkan Strömberg 6 KTH Syd

7 Svar: 0.3 timmar före matchstart, det vill säga 3.8 minuter innan avspark. d) Här ska vi ta reda på f (0). Derivatan är f (t) = e 3t vilket ger f (0) = e 3 0 = Figur 6: 7 Bestäm f (x) = 0 då f(x) = x + x Lösning: Vi skriver om funktionen så att det ska bli lättare att derivera Derivatan f (x) = 0 ger ekvationen f(x) = x + x f (x) = x + ( )x 3 = x x 3 x x 3 = 0 x = x 3 x = x x x 3 = x x = Vi plottar f(x) och ser antagligen att det finns en minimipunkt i (, 4 ). Håkan Strömberg 7 KTH Syd

8 Figur 7: En modell N(t) beskriver ett förlopp. Bestäm tillväxthastigheten vid tiden t = 3. N(t) = t 3 Derivera f(x) = x 5 och g(x) = 5 x 3 a) Vad krävs av f (x) för att f(x) ska var växande? b) Kan f (x) > 0 fast f(x) < 0? c) Om både f (x ) = 0 och f(x ) = 0 för ett värde x = x, vad kan man då säga om ett av f(x) s nollställen? d) För ett polynom p(x) finns x = x, x = x och x = x 3 sådana att p (x ) = 0, p (x ) = 0 och p (x 3 ) = 0. Vilket är det minsta gradtal p(x) kan ha? e) För ett visst värde x = x är f (x) > 0 för ett annat x = x där x > x är f (x) < 0. Vad kan man säga om f(x) i intervallet [x, x ]? 4 En extrempunkt hos en funktion är ett antigen en: maxpunkt, minpunkt eller terrasspunkt. Ta med dosans hjälp reda på vilka extrempunkter denna funktion har f(x) = x4 4 5x x 3x 5 En funktion f(x) är hela tiden växande (eller avtagande) om den saknar x för vilka f (x) = 0. Hur är det med i detta avseende? f(x) = 3x + x 3 Håkan Strömberg 8 KTH Syd

9 Vi bestämmer N (t) och därefter N (3) och vi har svaret. och sedan N (t) = 3t N (3) = 3 3 = 7 Svar: Tillväxthastigheten är 7 (sorten är vadå förnå t ) ger 3 a) Att f (x) > 0 b) Javisst c) Att det handlar om en dubbelrot f (x) = 5x 4 g(x) = 5 x = e xln 5 g (x) = ln5e xln 5 d) Polynomet har en en term med minst gradtalet 4 e) f(x) måste ha ett maximum i intervallet 4 Det är inte lätt att avgöra grafiskt, men antagligen har den en minpunkt och terrasspunkt. När man använder dosan för att plotta en graf gäller det att Figur 8: förstora upp den del av av grafen där det händer saker. Den här grafen, figur 9, är inte till mycket nytta 5 Planen går ut på att först derivera f(x) och sedan lösa ekvationen f (x) = 0. Om det visar sig att ekvationen saknar rötter är funktionen genomgående växande eller avtagande. Genom att bestämma f (x ) för något x = x får man reda på vilket. f (x) = 3 + 3x Håkan Strömberg 9 KTH Syd

10 Figur 9: f (x) = 0 ger ekvationen 3 + 3x = 0 x = 3 3 x = ± 3 3 Ekvationen saknar reella rötter. Eftersom f (0) = 3 > 0 är funktionen f(x) ständigt växande. Plotta den på dosan! Räkna bokens uppgifter: 36, 364, 365, 366, 367, 369, 37, 373, TB: V(t) = 5000 e kt, värdet V, som funktion av tiden t. V(5) = Med hjälp av det villkoret ska vi kunna bestämma k 5000 e 5k = e 5k = lne 5k = ln k = ln Konstigt att minustecknet bara försvinner! k = ln / KTH: ln = 0, då är det ju inte så konstigt att lnx < 0 då x < TB: Nu ska jag alltså bestämma derivatan f (x) = e 0.686x och med hjälp av den f (5) Bilens värde avtar alltså med cirka 600 kr/år just när den är 5 år gammal. Har vi inte räknat ett sådan tal förut? Håkan Strömberg 0 KTH Syd

11 TB: Tidigare har vi uttryckt denna formel som ( V(t) = S + r ) t 00 Med den får man bättre koll på tillväxtfaktorn tycker jag. Kan man inte skriva om funktionen ovan på denna form? KTH: Eftersom 364 Så får vi som du vill e 0.686x = ( e 0.686) x = V(t) = t Värdet avtar med cirka 5% per år. Ganska mycket eller hur? TB: Nu över till Per och hans funderingar kring befolkningsexplosionen. Han har antagit f(x) = x x f(0) = 8.89 vilket betyder att det fanns 8.89 miljoner själar i Sverige vid millennium-skiftet. Skulle vara kul att se hur grafen av hans funktion ser ut: Figur 0: KTH: 94 år Om den här prognosen är sann kommer Sveriges befolkning att börja dala vid omkring år 040. Hur gammal är du då? TB: Vad var det nu de ville ha reda på? Jo vilken förändring i folkmängden (människor/år), det kommer att vara år 00 och år 040. För att kunna svara på den frågan måste jag derivera f(x) och därefter beräkna f (0) och f (40) 365 f (x) = x f (0) = och f (40) = År 00 kommer Sveriges befolkning, enligt Per att öka med 9680 personer och 040, precis som jag förutspådde, befolkningen att avta med 3840 personer. TB: En ny befolkningsprognos, N(t) = t. Jag börjar bli lite trött på det här, men OK. Jag vill skriva om funktionen så att jag enklare kan derivera Håkan Strömberg KTH Syd

12 366 den. Sedan ska jag bestämma N (5) N(t) = t tln 0.98 N(t) = 5000 e N (t) = 5000 ln0.98 e N (5) = 5000 ln0.98 e N (5) = 457 tln ln 0.98 År 005 kommer utflyttningen att överskrida inflyttningen med 457 personer. Det handlar förstås om en norrlandskommun. TB: f(x) = x ska deriveras genom att skriva om den som f(x) = C a x. Så det skulle alltså betyda att jag inte får gå över omskrivning med basen e. Jobbigt. f(x) = x = 0000 (.0 4) x = x Det finns förstås möjlighet att derivera mer direkt. Jag minns att f(x) = C a x har derivatan f (x) = C lna a x Tillämpar jag denna kunskap får man KTH: Nu kan du det 367 d) f (x) = ln x TB: Givet funktionen f(x) = x x Man är ute efter f (x) = 0. Jag måste alltså först derivera f(x). Vidare f (x) = 3 43 x f (x) = x = 0 x = 3 43 x = ± 3 43 x = 7 x = Håkan Strömberg KTH Syd

13 TB: Den här funktionen som ska deriveras ser jobbig ut N(t) = e 0.t Hur ska jag kunna derivera den här funktionen? KTH: Ja, jag förstår inte hur du ska klara av att derivera den här funktionen. Derivatan är N 4500 e0.t (t) = (49 + e 0.t ) Med hjälp uttrycket kan vi nu bestämma N (0) = TB: Nu flummar du iväg utan att tänka på att jag inte har en chans att hänga med KTH: Jag har givit dig ett svar och nu ska du uppskatta derivatan med hjälp av en differenskvot TB: Det var ett tag sedan sist jag använde mig av differenskvoten. Jag beräknar N(0) = och N(0.0) = och kan nu beräkna differenskvoten: y δx = = 4.9 Även jag har kommit fram till att 5 personer insjuknar under ett dygn kring den 0:e dagen. Det är lite jobbigt att inte veta om man kan lösa en uppgift exakt eller måste ta till approximativa metoder. KTH: Det gäller alla, på alla nivåer. Men läser vi problemtexten en gång till ser vi att det står att problemet ska lösas numeriskt. Det är detta ord som öppnar dörren till den teknik du använt. 37 TB: Nu handlar det om djur och deras hjärtan. f(m) = k m 0.5, där f(m) är pulsen (antal hjärtslag/minut) och m djurets massa (kg). k är en konstant som vi inte känner. Vi ska nu bestämma Vad betyder nu detta? KTH: Inget annat än f (x)/f(x) df(x) dm / f(x) TB: Efter att beräknat f (m) = 0.5 k m.5 kan jag ställa upp kvoten 373 f (m) f(m) = 0.5 k m.5 k m 0.5 = 4m Det står inget om att man ska tolka svaret vilken tur TB: Funktionen B(t) = 0 t, Antalet bakterier B som funktion av tiden t (i timmar). Jag ska nu beräkna B (t) = 000. B (t) = ln 0 t Håkan Strömberg 3 KTH Syd

14 Ekvationen som ska lösas är B (t) = 000 ln 0 t = 000 t = 00 ln e ln t 00 ln = e ln t ln = ln 00 ln 00 ln ln t = ln 7.76 Efter 7.7 timmar är tillväxten ungefär 000 bakterier/timme KTH: Nu återstår bara en uppgift för idag 376 TB: Man antar här en exponentiell funktion f(x) = C a x. För att komma fram till et svar måste först C och a bestämmas. Detta kan göras med hjälp av två punkter på kurvan (0, 3.75) och (8,.9). Vi får ett ekvationssystem { C a 0 = 3.75 C a 8 =.9 Jag jobbar vidare C = 3.75 a 0 C =.9 a 8 Nu kan jag räkna ut C.9 = 3.75 a 8 a = a8 a = a8 a = C = ( ) Nu har jag funktionen f(x) = x och kan besvara frågorna, vilka de nu var. f(0) = vilket betyder att vår vän Pontus aldrig varit Håkan Strömberg 4 KTH Syd

15 över den farliga gränsen på 5. För att besvara nästa fråga måste jag derivera f(x) f(x) = x f (x) = ln x f (30) = 0.87 Efter 30 timmar försvinner 0.3 µg/ml på en timma. Halveringstiden får man reda på genom följande ekvation = x 0.5 = x 0 lg 0.5 xlg = 0 x = lg0.5 lg timmar efter en mätning har hälften av det gift som då finns i kroppen försvunnit. KTH: Nu har du varit duktig Håkan Strömberg 5 KTH Syd

16 Svar till: De fyra korten Vi översätter de fem satserna till lika många pusselbitar Valörbitarna kan endast sättas samman på ett sätt. Färgbitarna likaså. När vi sedan passar in färgkorten över raden av valörkort, finns det även här endast en möjlighet och vi har svaret: hjärterdam, hjärterkung, spaderkung och spaderdam. Dagens problem: Finn skeppen I figuren ovan till vänster ser vi ett hav bestående av 0 0 rutor. I havet finns ett antal fyrar markerade med cirklar. Inuti cirklarna finns ett tal, som berättar hur många skepp man kan se från fyren. Alla dessa skepp finns i samma rad eller kolumn som fyren. De åtta rutor som maximalt kan omge ett skepp kan aldrig innehålla vare sig ett annat skepp eller en fyr. Alla skepp syns från åtminstone en fyr. Var finns skeppen? Samma fråga för havet till höger i figuren. Håkan Strömberg 6 KTH Syd

5 Blandade problem. b(t) = t. b t ln b(t) = e

5 Blandade problem. b(t) = t. b t ln b(t) = e 5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar.

Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. 1 Bestäm med jälp av derivatans definition f () då f(x) = x + x + Funktionen f(x) = x 4x + 8 ar en minpunkt. Bestäm

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

9 Skissa grafer. 9.1 Dagens Teori

9 Skissa grafer. 9.1 Dagens Teori 9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1 Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1: Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd

Läs mer

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1 Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.

Läs mer

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition 3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster

Läs mer

10 Derivator och tillämpningar 1

10 Derivator och tillämpningar 1 10 Derivator och tillämpningar 1 10.1 Dagens Teori Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Övning 10.1

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Allt du behöver veta om exponentialfunktioner

Allt du behöver veta om exponentialfunktioner Allt du behöver veta om exponentialfunktioner Problem 1. Funktionerna a) a(x) = e x b) b(x) = e x c) c(x) = 4 x e x ln4 d) d(x) = 3 10 x 3 e x ln10 e) e(x) = ex 3 avbildas i figuren. Vilken är vilken?

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x Derivator.1 Dagens Teori Figur.1: I figuren ser vi grafen till funktionen f(x) = x 3 + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7 3 finns en tangent som tangerar kurvan i (, 10 3

Läs mer

8 + h. lim 8 + h = 8

8 + h. lim 8 + h = 8 Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

10.1 Linjära första ordningens differentialekvationer

10.1 Linjära första ordningens differentialekvationer 10.1 Linjära första ordningens differentialekvationer Här ska vi studera linjära första ordningens differentialekvationer som kan skrivas y (x) + g(x)y(x) = h(x) Om g(x) har en primitiv funktion G(x) så

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?

4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7 Kontroll 13 Uppgift 1 Avståndet, r parsec, till en stjärna kan bestämmas med formeln M = m + 5 5 lgr där M =stjärnans absoluta ljusstyrka och m =stjärnans skenbara ljusstyrka. (1 parsec= 3.26 ljusår= 9.46

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.

En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Ma3bc. Komvux, Lund. Prov kap

Ma3bc. Komvux, Lund. Prov kap Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)

Läs mer

Envariabelanalys 5B1147 MATLAB-laboration Derivator

Envariabelanalys 5B1147 MATLAB-laboration Derivator Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr.

Kapitel , 2102 Exempel som löses i boken a) Löneökning per månad: 400 kr. b) Skattehöjning per månad: 5576 kr 5376 kr = 200 kr. Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Kapitel.1 101, 10 Eempel som löses i boken. 10 Löneökning per månad: 400 kr Förändring i årslön = 1 400 kr = 4800 kr OBS! Fel

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 = Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 2 Mikael Hindgren 12 november 2018 Derivatan av inversen till en funktion Exempel 1 y = f (x) = x är strängt växande och har en invers. Bestäm Df (x) och

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer