Trigonometri. Sidor i boken 26-34

Storlek: px
Starta visningen från sidan:

Download "Trigonometri. Sidor i boken 26-34"

Transkript

1 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor och vinklar i en triangel när vissa av dessa är kända. Det handlar då om plan trigonometri. Här ska vi hålla oss till rätvinkliga trianglar. I senare kurser kommer trigonometrin att innefatta godtyckliga trianglar. Ibland kommer det trots allt att dyka upp icke rätvinkliga trianglar. Då är lösningen, att med hjälp av en konstruktion, till exempel genom att dra en höjd åstadkomma två rätvinkliga trianglar. Närliggande och Motstående står i relation till vinkeln v, som är given eller efterfrågad. tanv = sinv = cosv = motstående katet närliggande katet motstående katet hypotenusan närliggande katet hypotenusan tanv = a b sinv = a c cosv = b c Innan vi sätter igång att solvera rätvinkliga trianglar ska du se till att din räknare är inställd på räkning i grader. Kontrollera att 45 TAN ger resultatet 1. Vinklar mäts i allmänhet i grader (360 på ett varv) eller i radianer (π på ett varv). Här ska vi hålla oss till grader. Håkan Strömberg 1 KTH STH

2 Känner man två storheter i formlerna ovan, kan man enkelt bestämma den tredje. Nr Känt Sökt Formel I v, a b b = a tanv II v, b a a = b tanv III a, b v v = arctan a b IV v, a c c = a sinv V v, c a a = c sinv VI a, c v v = arcsin a c VII v, b c c = b cosv VIII v, c b b = c cosv IX b, c v v = arccos b c I formlerna III, VI och IX ska man bestämma en vinkel. till exempel v = arcsin På dosan trycker man då SIN 1 1/ och motsvarande COS 1 för arccos och TAN 1 för arctan. Problem 1. Vad kallas triangeln i figuren. Bestäm h och b. Lösning: En triangel med vinklarna kallas en halv liksidig. h = 0 sin b = 0 cos60 = 10 Den korta kateten är då häften så lång som hypotenusan. Antag att hypotenusan är a, sidan b = a. Med hjälp av Pythagoras sats kan vi så räkna ut sidan h (a) = a +h 4a = a +h 3a = h h = 3a h = a 3 Av detta får vi att höjden i en liksidig triangel med sidan a är h = a 3. Håkan Strömberg KTH STH

3 Problem. Beräkna triangelns area. Lösning: Med hjälp av formeln Först bestämmer vi höjden genom AD = h A = b h h = 46 sin sedan BD = b 1 b 1 = 46 cos och så DC = b b tan Till sist kan vi bestämma arean Svar: 831 cm A = ( ) Problem 3. Beräkna den rätvinkliga triangelns area. Lösning: Basen BC = 50. Höjden mot BC = h får vi genom Arean blir då h = 39 sin A = Vi kunde likväl bestämt oss för att beräkna höjden mot AB = h, som ger h = 50 sin Arean blir då A = Samma resultat! Hur överraskande var det? Längre fram i era matematikstudier (närmare bestämt nästa kurs), kommer ni att stifta bekantskap med areasatsen, som efter denna uppgift är lätt att inse A = a b sinγ Håkan Strömberg 3 KTH STH

4 där γ är vinkeln mellan a och b. Problem 4. I en likbent triangel är höjden hälften av basens längd. Arean är 400 cm. Bestäm triangelns omkrets. Lösning: Antag att höjden är AD = x. Då är basen BC = x. Vi kan då teckna en ekvation med hjälp av formeln b h. x x = 400 x = 800 x = 400 x = 400 x = 0 Höjden är alltså AD = 0 och basen BC = 40. Återstår att bestämma längden hos de två lika långa benen AB och AC. Höjden delar basen mitt itu i en likbent triangel. Med hjälp av Pythagoras sats kan vi nu bestämma AC = y i ADC. y = 0 +0 y = 0 y = 0 Triangeln ADC är en halv kvadrat. Vi finner att diagonalen idenna kvadrat, AC är 0. Det vill säga kvadratens sida. Så är det alltid. Bra att veta. Vi får omkretsen cm. Svar: 96.6 cm Problem 5. Beräkna figurens omkrets Lösning: AD = x kan vi få fram direkt genom sin49 = 34 x som ger x = AD Vi kan också bestämma ED = y med hjälp av tan49 = 34 y som ger y = ED Turen har nu kommit till BE = z. Vi får tan53 = z 34 Håkan Strömberg 4 KTH STH

5 som ger z = BE Vi vet nu att BD = = Nu kan vi gå på BCD. Först BC = u. Vi får cos4 = u som ger u I nästa steg bestämmer vi DC = v genom tan4 = v med resultatet v = DC Återstår så AB = w. Vi får cos53 = 34 w som ger w = Nu kan vi bestämma omkretsen = Svar: Omkretsen är 17 cm Nedan följer först 9 uppgifter, alla med rätvinkliga trianglar och med en obekant. Ibland efterfrågas sidan x och ibland vinkeln v. Tillsammans kommer de 9 olika situationerna från tabellen ovan att tillämpas exakt en gång! Läxa 1. Bestäm v Läxa. Läxa 3. Håkan Strömberg 5 KTH STH

6 Läxa 4. Bestäm v Läxa 5. Läxa 6. Bestäm v Läxa 7. Läxa 8. Håkan Strömberg 6 KTH STH

7 Läxa 9. Läxa 10. Bestäm rektangelns omkrets Läxa 11. Bestäm figurens omkrets Läxa 1. Givet ABC där sidan BC är dubbelt så lång som sidan AC. Höjden CD = 63 cm mot sidan AB och BAC = 44. Bestäm triangelns area. Läxa Lösning 1. Formel III v = arctan Läxa Lösning. Formel V Läxa Lösning 3. Formel I Läxa Lösning 4. Formel IX Läxa Lösning 5. Formel VII x = 11.4 sin38 7 x = 5 tan v = arccos v = 7 cos Håkan Strömberg 7 KTH STH

8 Läxa Lösning 6. Formel VI Läxa Lösning 7. Formel VIII Läxa Lösning 8. Formel II v = arcsin x = 9. cos40 7 x = 7 tan45 7 Läxa Lösning 9. Formel IV 9 x = sin Läxa Lösning 10. Vi bestämmer höjden h och basen b genom och Omkretsen blir då b = 60 cos h = 60 sin30 30 h+b Observera att höjden ska man kunna se direkt eftersom diagonalen delar rektangeln i två halva liksidingar Svar: 164 cm. Läxa Lösning 11. För att kunna bestämma AB och AD behöver vi BD. BD = x är hypotenusa i BCD. Pythagoras sats ger x = 3 +4 x = 5 x = 5 BCD är ofta förkommande, eftersom alla sidor är heltal, och kallas för den egyptiska triangeln. När vi betraktar ABD ser vi att den är en halv kvadrat eftersom den har vinklarna Det betyder att AB = BD = 5. Återstår så att bestämma AD = y. Vi kan använda trigonometri eller Pythagoras sats, vilket som. sin45 = 5 y 5 y = sin45 y 7.07 Det är bra att känna till att för en given sida s i en kvadrat är diagonalen s. I vår uppgift y = Vi får så omkretsen Svar: 19 cm = Läxa Lösning 1. Du måste rita figur! Antag att CA = x och CD = x. Med hjälp av sin44 = 63 x får vi x = CA Vi vet nu att CB = x Vi beräknar nu AD = y tan44 = 63 y ger y = AD Sedan över till DB = z som vi får genom Pythagoras sats = 63 +z z = z Håkan Strömberg 8 KTH STH

9 Nu har vi basen AB = = och kan därmed bestämma arean A = Svar: 7413 cm Håkan Strömberg 9 KTH STH

10 Tuff vecka Trigonometri Föreläsning 14. Uppgifter: Läxa Föreläsning 15: Uppgifter: Läxa 1-8. Boken sid a och b uppgifter. Räta linjen Föreläsning 16. Uppgifter: Läxa Föreläsning 17: Uppgifter: Läxa Boken sid a och b uppgifter. Linjära ekvationssystem Föreläsning 19. Uppgifter: Läxa Boken sid a och b uppgifter. Kursbunten sid 5 1. Repetition Kursbunten -5, Area och Volymskala Repetition Föreläsning 18 I KS ingår Potenser Rötter Likformighet Trigonometri Räta linjen Linjära ekvationssystem Det är rimligt att förvänta sig poäng inom varje område. Håkan Strömberg 1 KTH STH

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

geometri ma B 2009-08-26

geometri ma B 2009-08-26 OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

M0038M Differentialkalkyl, Lekt 8, H15

M0038M Differentialkalkyl, Lekt 8, H15 M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal

Läs mer

MVE365, Geometriproblem

MVE365, Geometriproblem Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..

Läs mer

3. Trigonometri. A c. Inledning

3. Trigonometri. A c. Inledning 3. Trigonometri Inledning Trigonometri betyder triangelmätning. De grundläggande storheterna som vi kan mäta i en triangel är dess sidor och vinklar. Ett bra sätt att beteckna en triangels sidor och hörn

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 30 augusti 01 Innehåll 3 Geometri och trigonometri 8 3.1 Euklidisk geometri........................... 8 3.1.1 Kongruens och likformighet..................

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson (2013). Ändringar av Jakob Larsson och Emelie Fogelqvist (2014). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist och Simon Winter (2013 2016). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

Geometri och Trigonometri

Geometri och Trigonometri Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 (Enligt "nytt format" : fler och lättare uppgifter jämfört med hittills rådande tradition se sid.5. Alla uppgifter värda lika mycket.) 1. Lös

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Lathund geometri, åk 7, matte direkt (nya upplagan)

Lathund geometri, åk 7, matte direkt (nya upplagan) Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8

Läs mer

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Trigonometri. Joakim Östlund Patrik Lindegrén 28 oktober 2003

Trigonometri. Joakim Östlund Patrik Lindegrén 28 oktober 2003 Trigonometri Joakim Östlund Patrik Lindegrén 28 oktober 2003 1 Sammanfattning Trigonometrin är en mycket intressant och användbar del av matematiken. Med hjälp av dom samband och relationer som förklaras

Läs mer

Avdelning 1. Trepoängsproblem

Avdelning 1. Trepoängsproblem vdelning 1. Trepoängsproblem Kängurutävlingen Matematikens hopp 1. Hur många tärningsögon finns det sammanlagt på de sidor som du inte kan se på bilden? ) 15 B) 1 C) 7 D) 7 E) Inget av dessa svar (Bulgarien).

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i.

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i. STOCKHOLMS UNIVERSITET iagnostiskt prov Lösningar MTEMTISK INSTITUTIONEN Vektorgeometri och funktionslära vd. Matematik VT 20 Lösning till uppgift (Komplexa tal) Vi börjar med första och andra uträkningen.

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan

Läs mer

c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.

c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC. Lösningar till några övningar i geometri Kapitel 2 1. Formuleringen av övningen är tyvärr inte helt lyckad (jag ska ändra den till nästa upplaga, som borde ha kommit för länge sedan). Man måste tolka frågan

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Repetition av cosinus och sinus

Repetition av cosinus och sinus Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0.08.06 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik: Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA

Läs mer

Trigonometri och funktioner

Trigonometri och funktioner Trigonometri och funktioner Mats Boij & Roy Skjelnes 6 juli 2009 KTH Teknikvetenskap, Inst. för matematik SF1658 Trigonometri och funktioner ii Innehåll 1 Första veckan Geometri med trigonometri 1 1.1

Läs mer

5. Sfärisk trigonometri

5. Sfärisk trigonometri 5. Sfärisk trigonometri Inledning Vi vill använda den sfäriska trigonometrin för beräkningar på storcirkelrutter längs jordytan (för sjöfart och luftfart). En storcirkel är en cirkel på sfären vars medelpunkt

Läs mer

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13 Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 4

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 4 Kopletterande lösningsförslag och ledningar, Mateatik 3000 kurs B, kapitel 4 Kapitel 4.1 4101 Eepel so löses i boken. 410 Triangelns vinkelsua är 180º. a) 40º + 80º + = 180º b) 3º + 90º + = 180º = 180º

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Fall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π

Fall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π 48 a sin x + cos x = cos x Trigonometriska ettan sin v + cos v = 1 1 = cos x cos x = 1 x = ±cos 1 (1) + n π x = 0 + n π x = n π b sin x cos x = 1 Multiplicera båda led med sin x cos x = 1 sin x cos x =

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

formler Centralt innehåll

formler Centralt innehåll Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga

Läs mer

Geometri med fokus på nyanlända

Geometri med fokus på nyanlända Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara

Läs mer

Lite sfärisk geometri och trigonometri

Lite sfärisk geometri och trigonometri Lite sfärisk geometri och trigonometri Torbjörn Tambour 8 april 2015 Geometri och trigonometri på sfären är ett område som inte nämns alls i de vanliga matematikkurserna, men som ändå är värt att stifta

Läs mer

för Tekniskt/Naturvetenskapligt Basår

för Tekniskt/Naturvetenskapligt Basår Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Kvalificeringstävling den 30 september 2014

Kvalificeringstävling den 30 september 2014 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 17, 1934 Första häftet 654. Lös ekvationen sin x + cos x + tan x + cot x = 2. (S. B.) 655. Tre av rötterna till ekvationen x 4 + ax 2 + bx + c = 0 äro x 1, x 2 och x 3. Beräkna x 2 1 + x2 2 + x2

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 6, 9 Första häftet 575. En normalkorda i en parabel är given till längd och läge. Bestäm enveloppen för parabelns styrlinje. 576. Att genom en given punkt draga en sekant till två givna cirklar

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

ÖVNINGAR I MATEMATIK. Göran Forsling. 14 april 2011

ÖVNINGAR I MATEMATIK. Göran Forsling. 14 april 2011 ÖVNINGAR I MATEMATIK Göran Forsling 4 april 0 Förord. Tänker du börja studera på ett tekniskt/naturvetenskapligt program till hösten? Vill du ge dina studier en flygande start? I stort sett vilken teknisk/naturvetenskaplig

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till

Läs mer

PRELIMINÄRPROV Kort matematik

PRELIMINÄRPROV Kort matematik PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

LNC Lösningar

LNC Lösningar LNC022 2013-05-27 Lösningar 1. (a) På en vägskylt står det att vägens lutning är 12 %. Om detta innebär att höjdskillnaden är 12 % av den körda vägsträckan, vilken är då vägens lutningsvinkel? (Rita figur.)

Läs mer

Algebraiska räkningar

Algebraiska räkningar Kapitel 1 Algebraiska räkningar 1.1 Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller bl.a. följande enkla räkneregler, som man väl använder utan att speciellt tänka på dem:

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Enklare uppgifter, avsedda för skolstadiet.

Enklare uppgifter, avsedda för skolstadiet. Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en

Läs mer

Problemlösning med hjälp av nycklar

Problemlösning med hjälp av nycklar Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

sin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x

sin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x 33 a Använd additionsformel för sinus sin(x + 55 ) = sin x cos 55 + cos x sin 55 cos 55 och sin 55 beräknas med tekniskt hjälpmedel TI-räknare c Använd additionsformel för sinus sin (x + π ) = sin x cos

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer