KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

Storlek: px
Starta visningen från sidan:

Download "KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633."

Transkript

1 KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att följa. Svaren skall ges på reell form. Del 1 är avsedd för betyg E och omfattar 3 uppgifter. För betyg E krävs 3 godkända moduler. Del är avsedd för högre betyg, A, B, C och D, och omfattar totalt poäng. För betyg A krävs förutom 3 godkända moduler även 15 poäng på del. För betyg B krävs förutom 3 godkända moduler även 11 poäng på del. För betyg C krävs förutom 3 godkända moduler även 7 poäng på del. För betyg D krävs förutom 3 godkända moduler även 3 poäng på del. Del 1 Modul 1. En termometer tas inifrån ett rum och ut, där temperaturen är 5 C. Efter 1 minut avläses 15 C och efter minuter avläses 1 C. Vad är rummets temperatur? Ledning: Antag att Newtons avsvalningslag gäller, dvs att avsvalningshastigheten är proportionell mot temperaturdifferensen. Låt T (t) vara termometerns temperatur vid tiden t. Vid tiden t = sammanfaller termometerns temperatur med rummets temperatur. Bestäm T(). Enligt den givna ledningen gäller att: T ʹ = k(t 5), där k är en proportionalitetskonstant. Differentialekvationen kan omformas till: T ʹ kt = 5k. Vi skriver direkt upp lösningen som summan av allmänna homogena lösningen plus en partikulärlösning: T(t) = Ce kt + 5. De givna villkoren ger: 15 = T(1) = Cek = Ce k = e k, k = ln. 1 = T() = Ce k = Ce k 5 = Ce ( ln ) = C, C = Termometerns temperatur är T(t) = e t ln + 5 = t + 5 och T() = 1+ 5 = 5 SVAR: Rummets temperatur är 5 C. Modul. Låt y 1 (x) = 3x, y (x) = x + x, y 3 (x) = x + 5x och y 4 (x) = 7x + x vara lösningar till en linjär homogen differentialekvation av ordning två. Vidare är y p = x ln x, x > lösning till motsvarande inhomogena differentialekvation. Bestäm den lösning till den inhomogena differentialekvationen som uppfyller villkoren y(1) = och y ʹ (1) = 3. Den allmänna lösningen till en linjär differentialekvation av ordning två består av summan av den allmänna homogena lösningen och en partikulärlösning till den inhomogena differentialekvationen. Av de givna homogena lösningarna väljer vi två linjärt oberoende lösningar. Vi väljer y a = x och y b = x. De givna lösningarna kan erhållas som linjärkombinationer av y a = x och y b = x Den allmänna lösning till den inhomogena differentialekvationen kan skrivas som

2 y(x) = c 1 x + c x + x ln x. För att bestämma konstanterna behövs även derivatan. y ʹ (x) = c 1 + c x + ln x + x 1 x. = y(1) = c 1 + c + c = Insättning av villkoren ger vilket ger. 3 = y ʹ (1) = c 1 + c +1 c 1 = Vi får y(x) = x + x + x ln x SVAR: Den sökta lösningen är y(x) = x + x + x ln x. Modul 3. Undersök om f 1 (x) = x och f (x) = x är ortogonala på intervallet (,). Den inre produkten ges av f 1 (x) f (x)dx. Bestäm därefter konstanterna c 1 och c så att f 3 (x) = x + c 1 x + c x 3 blir ortogonal mot både f 1 och f på samma intervall. Vi undersöker om funktionerna är ortogonala genom att först bestämma den inre produkten mellan dessa. Om den inre produkten är lika med noll så är funktionerna ortogonala. f 1 (x) f (x)dx = xx dx = x 3 dx =, ty udda funktion och origosymmetriskt intervall. Den inre produkten är lika med noll och således är funktionerna ortogonala. Vi skall bilda ett ortogonalt system med hjälp av funktionerna f 1, f och f 3. Inre produkten mellan f 1 och f 3 lika med noll ger: = Inre produkten mellan f och f 3 lika med noll ger: = = c 5 5 c Vi erhåller följande system: = = c 1 c 1 = 5 Det polynom f 3 som är ortogonalt mot f 1 och f är f 3 (x) = x 5 1 x 3. f 1 (x) f 3 (x)dx = x(x + c 1 x + c x 3 )dx f (x) f 3 (x)dx = x (x + c 1 x + c x 3 )dx SVAR: f 1 (x) = x och f (x) = x är ortogonala på intervallet (,). c 1 = och c = 5 1. Del 11. a) En lösning till begynnelsevärdes problemet y ʹ = y 4, y() = ges av y. Är lösningen entydig? b) y = x 3 är en lösning till y ʹ = 3y 3, y() =. Är lösningen entydig? c) Ange det största intervall i vilket lösningen till ekvationen y ʹ = 3x (y +1), y(1) =1 existerar. Är lösningen entydig?

3 df (y) a) Funktionen f (y) = y 4 och dess derivata = 4 y 3 är kontinuerliga. dy Enligt entydighetssatsen är lösningen entydig. b) Lösningen är ej entydig, ty en annan lösning till begynnelsevärdes problemet är y. c) Vi bestämmer först lösningen till differentialekvationen och bestämmer därefter y ʹ integrationskonstanten. Ekvationen är separabel och vi får 1+ y = 3x. Integration med avseende på x ger: arctan y = x 3 + C. Bestäm integrationskonstanten. Villkoret ger: C = arctan1 1 = 1 1 = 4 4. Insättning ger: arctan y = x 3 + 4, y = tan x Vi har att < arctan y < vilket ger följande olikheter < x < 4. Lös ut x: < x 3 < , 3 < x < f (x, y) f (x, y) = 3x (y +1) och = 3x yär kontinuerliga. y Enligt entydighetssatsen är lösningen entydig. SVAR: a) Entydig b) Ej entydig c) Entydig och existensintervallet är x : < x < Klassificera med avseende på stabilitet och typ de kritiska punkterna till ett plant autonomt system svarande mot den icke-linjära andra ordningens differentialekvation x ʹ (x 1) x ʹ + x =. Vi skriver om differentialekvationen genom att sätta y = x ʹ och y ʹ = x ʹ = (x 1) x ʹ x. x ʹ y x ʹ Vi får = y ʹ (x. I de kritiska punkterna är hastighetsvektorn 1)y x y ʹ =. Den enda kritiska punkten är origo. Vi undersöker typ och stabilitet genom att linjarisera med hjälp av Jacobimatrisen och bestämma dess egenvärden. Jacobimatrisen J(x, y) = 1 xy 1 x 1 Insättning av den kritiska punkten ger den konstanta matrisen vars egenvärden bestämmes. J(,) = 1 = A 1 1 Egenvärdena fås ur ekvationen det(a λi) =. = λ 1 1 λ 1 = λ + λ +1 = λ λ = 1 4 ± i 3

4 Vi har komplexa egenvärden med negativ realdel. Det innebär att den stationära lösningen (kritiska punkten) är en stabil spiral. SVAR: Den stationära lösningen är en stabil spiral. 13.a) Definiera begreppet fundamentalmatris. b) Låt Φ vara en given fundamentalmatris till systemet X ʹ = AX. Bestäm utgående från detta den konstanta matrisen A. c) Tillämpa b) på fundamentalmatrisen Φ = e t 3e 4t e t e 4t a) Fundamentalmatrisens kolonner består av de linjärt oberoende lösningarna till systemet. b) Eftersom varje kolonn i fundamentalmatrisen satisfierar systemet så satisfierar även fundamentalmatrisen systemet. Vi får Φ ʹ = AΦ vilken multipliceras från höger med inversen till fundamentalmatrisen. Existensen av inversen är säkerställd ty fundamentalmatrisen består av linjärt oberoende kolonner. Vi får Φ ʹ Φ 1 = AΦΦ 1 vilket ger A = Φ ʹ Φ 1. c) Nu över till att bestämma den konstanta matrisen A. Vi behöver derivatan av fundamentalmatrisen. Φ ʹ = e t 1e 4 t e t 8e 4t Här finns flera olika vägar. En kort väg är att betrakta fundamentalmatrisen för t =. Fundamentalmatrisen är Φ = 1 3 vars invers är Φ 1 = Derivatan av fundamentalmatrisen för t = är Φ ʹ = Den sökta konstanta matrisen är A = Φ ʹ Φ 1 = 1 3 = = SVAR: a) Se ovan. b) Den konstanta matrisen är A = Φ ʹ Φ 1. c) A = 3 1 Anmärkning: c) Det ger samma resultat om Φ = e t 3e 4t användes. e t e 4t Vidare kan de två linjärt oberoende lösningarna sättas in i systemet X ʹ = a b X och därvid c d erhålles ett linjärt system med fyra ekvationer och fyra obekanta. 14. Härled utgående från definitionen laplacetransformen av f ε (t) = 4 U(t a) U(t (a +ε)) ε { }, ε >. Här äru(t) Heavisides stegfunktion. Låt ε gå mot noll i laplacetransformen av f ε (t). Lös begynnelsevärdesproblemet x ʹ + x ʹ + 5x = f (t) x() =1, x ʹ () =1 då f (t) = lim f ε (t). ε

5 Insättning av f ε (t) i definitionen av laplacetransform ger 4 L{ f ε (t)} = e st f ε (t)dt = e st U(t a) U(t (a +ε)) ε { a +ε }dt 4 = e st ε dt = 4 a εs e sa s(a +ε ) e Låt ε gå mot noll i laplacetransformen L{ f ε (t)}. Vi behöver MacLaurinutveckling av e t, e t =1+ t + t H(t) där H(t) är en begränsad funktion. { } = 4e sa ( 1 e sε ) = 4e sa ( 1 1+ sε ε H(ε) ) = 4e sa (1+εH(ε)) εs εs { } = lim L f ε (t) ( ) Vi får liml f ε (t) 4e sa (1+εH(ε)) = 4e sa. Laplacetransformen för 4δ(t a) ε ε har bestämts. Nu över till differentialekvationen vilken laplacetransformeras. s X(s) sx() x ʹ () + (sx(s) x()) + 5X(s) = 4e sa Insättning av villkoren och förenkling ger: s X(s) s 1+ (sx(s) 1) + 5X(s) = 4e sa { } = s e sa X(s) s + s + 5 (s +1) + X(s) = (s +1) e sa (s +1) + 4 Återtransformation ger: x(t) = e t (cost + sint) + U(t a)e (t a ) sin(t a). SVAR: För härledningen se ovan. liml{ f ε (t)} = 4e sa ε x(t) = e t (cost + sint) + U(t a)e (t a ) sin(t a) { } 15. a) Vad menas med att två funktioner f och g är ortogonala på ett intervall t : t L med den inre produkten { } b) Visa att sinnt den inre produkten L f (t)g(t)dt? { } med är ortogonal på intervallet t : t f (t)g(t)dt. c) Tilldela funktionen f fourierserien b n sinnt och g fourierserien B m sinmt. Uttryck integralen f (t)g(t)dt i fourierkoefficienterna. a) Två funktioner f och g är ortogonala på ett intervall då inre produkten är noll. b) Vi visar att inre produkten sinnt sinmtdt =, n m. sinnt sinmtdt = 1 cos(n m)t cos(n + m)t ( )dt = { n m} = 1 sin(n m)t n m sin(n + m)t n + m = För n = m erhålles 1 sinnt sinntdt = ( 1 cosnt)dt =.

6 c) Insättning av fourierserierna i integralen f (t)g(t)dt ger: f (t)g(t)dt = b n sinnt B m sinmtdt = b n sinnt B m sinmtdt = f (t)g(t)dt = { n = m} = b n B n = b n B n SVAR: a) Två funktioner f och g är ortogonala på ett intervall då inre produkten är noll. b) Se ovan. c) f (t)g(t)dt = b n B n b n B m sinnt sinmtdt

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3

1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3 Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant

Läs mer

IV, SF1636(5B1210,5B1230).

IV, SF1636(5B1210,5B1230). Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t), Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656. Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning. Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz. Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

A dt = 5 2 da dt + A 100 =

A dt = 5 2 da dt + A 100 = Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt Tentamensskrivning i Matematik IV, 5B0. Onsdagen den 0 oktober 004, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att

Läs mer

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att

Läs mer

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y 1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus

Läs mer

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning. Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december 2017 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära betygsgränser:

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

+, C = e4. y = 3 4 e4 e -2 x +

+, C = e4. y = 3 4 e4 e -2 x + ösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I för V, 5B Fredagen den augusti 3, kl -9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att beräkningar

Läs mer

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0. UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid: Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad

Läs mer

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer

( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).

( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ). KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2 Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00. Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl Version: A Namn:... Personnr:...

KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl Version: A Namn:... Personnr:... KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl. 8.00-10.00 Version: A Namn:... Personnr:... Inga hjälpmedel är tillåtna. Kontrollskrivningen har

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T. Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x. Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså

Läs mer

Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001

Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001 Institutionen för matematik KTH Provtentamen i Matematik 2, 5B1116, för B,E,I,IT,M,Media och T, ht 2001 Skrivtid: xx - yy Inga hjälpmedel tillåtna För godkänt betyg 3 fordras minst 16 poäng, för betyg

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

= ( 1) xy 1. x 2y. y e

= ( 1) xy 1. x 2y. y e Lösningsförslag, Matematik, B, E, I, IT, M, Media och T, -8- Den sista raden är nästan lika med den första raden med omvänt tecken Om vi därför adderar den första raden till den sista raden får vi en rad

Läs mer

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Lineära system av differentialekvationer

Lineära system av differentialekvationer Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems

Läs mer

TMV142/186 Linjär algebra Z/TD

TMV142/186 Linjär algebra Z/TD MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv

Läs mer

= x 2 y, med y(e) = e/2. Ange även existens-

= x 2 y, med y(e) = e/2. Ange även existens- MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Kursens Kortfrågor med Svar SF1602 Di. Int.

Kursens Kortfrågor med Svar SF1602 Di. Int. Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå

Läs mer