Tentamensskrivning i Matematik IV, 5B1210.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamensskrivning i Matematik IV, 5B1210."

Transkript

1 Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges på reell form Del är avsedd för beyg och omfaar 6 uppgifer För godkän krävs a 5 moduler är godkända Del är avsedd för högre beyg, 4 och 5, och omfaar poäng Poängfördelning på del : ger 4 poäng, - ger 5 poäng vardera och 4-5 ger poäng vardera För beyg 4 krävs föruom godkän på del även mins 8 poäng på del För beyg 5 krävs föruom godkän på del även mins 4 poäng på del OBS! GODKÄNDA MODUER TIGODORÄKNAS ENDAST FRÅN HÖSTEN 6 OBS! Del Modul Då en produk as u ur en ugn har den emperauren 7 C (Celsius) Den svalnar därefer med en avsvalningsak som är proporionell mo skillnaden i emperaur mellan produken själv och de omgivande rumme En konsul har hyrs in för a ureda denna avsvalningsprocess Konsulen föreslår vå olika maemaiska modeller å T() vara produkens emperaur vid iden dt Modell: = T 4 dt Modell : = T Besäm förs lösningen ill respekive modell och avgör därefer vilken modell som kan vara lämplig Differenialekvaionerna är linjära av försa ordningen ösningen fås som allmän homogen lösning plus en parikulär lösning Modell : T() = Ae + 4 Vid = är T = 7 Dea ger A = 66 Vi får T() = 66e + 4 Modell : T() = Ae + Vid = är T = 7 Dea ger A = 67 Vi får T() = 67e + Efersom de är en avsvalningsprocess är de endas modell som är rimlig, y i modell kommer emperauren a växa obegränsa SVAR: Modell : T() = 66e + 4 Modell : T() = 67e + Endas modell som är rimlig Modul Besäm den lösning ill ekvaionen som uppfyller villkore y() = aplaceransformera : y + 4y + y( )d = sy(s) y() + 4Y(s) + s Y(s) = Insäning av villkore ger: s Y(s) s + 4sY(s)+Y(s) = ös u den obekana funkionens aplaceransform Y(s) = s s + 4s +

2 Omformning ger: Y(s) = (s + ) (s + ) = (s + ) + 9 (s + ) + 9 Åerransformering ger: y() = e (cos sin) SVAR: Den söka lösningen är y() = e (cos sin) Modul Besäm konsanerna, b n, n =,,, x, då x / så a b n sin nx = n= x, då / x [ ] ges av b n är Fourierkoefficienerna ill den udda funkion som på inervalle, x, då x / f (x) = x, då / x De söka koefficienerna ges av b n = f (x)sin nxdx = / ( xsin nxdx+ ( x)sin nxdx) Vi överför den andra inegralen ill en inegral med samma inervall som den försa inegralen Sä: u = x, du = dx, / /,, Vidare är sin n( u) = sin n cosnu cosn sinnu = ( ) n + sinnu Insäning ger b n = ( ( ) n+ ) x sinnxdx Vi ser a för jämna n är b n =, dvs b m = För de udda helalen erhålles: b m+ = 4 / xsin(m +)xdx Inegraion ger oss b m+ = 4 ( / / cos(m +)x m + SVAR: De söka konsanerna blir b m = respekive b m+ = 4 Modul 4 Beraka e linjär sysem dx ) = 4 sin (m +) = 4 ( )m (m +) (m +) ( )m (m +) X = AX av vå differenialekvaioner Marisen A har reella elemen Vidare är de kän a e egenvärde är + i och en illhörande egenvekor är i Besäm den allmänna lösningen ill syseme Avgör vad som händer efer lång id med en parikel som placeras i punken (4,) En parikel som placeras i punken (4,) kommer efer lång id a gå mo den kriiska punken origo, y realdelen av egenvärde är mindre än noll Med hjälp av de givna egenvärde och illhörande egenvekor erhålles en komplex lösning Z = e ( +i ) i Realdel respekive imaginärdel av den komplexa lösningen ger vå linjär oberoende lösningar Dessa bildar varsin kolonn i en fundamenalmaris X = Re Z = Re e cos + isin X = Im Z = Im e cos + isin ( ) ( ) + i = cos e sin + i = sin e cos /

3 En fundamenalmaris är Φ = e cos e sin e sin e cos Den allmänna lösningen ill syseme ges av: X = ΦC, där C är en konsan vekor X = e cos e sin C e sin e cos C = C e cos e sin + C e sin e cos Även här kan parikelns öde avslöjas, y e, SVAR: Den allmänna lösningen ill syseme ges av: X = e cos e sin C e sin e cos C = C e cos e sin + C e sin e cos En parikel som placeras i punken (4,) kommer efer lång id a gå mo den kriiska punken, origo Modul 5 Beräkna dubbelinegralen ye x + y x + y { } där = (x, y): x + y 4, y x y dxdy De akuella område är en fjärdedels "ananasskiva" x = r cos Vi inför polära koordinaer dxdy= rdrd y = rsin Område beskrivs i polära koordinaer: D r = (r, ): r, 4 4 Insäning ger: ye x + y x + y ye x + y x + y dxdy r sin e r = rdrd = rsin e r dr r r = d dxdy SVAR: Dubbelinegralen Modul 6 Beräkna linjeinegralen D r = e4 e cos = e4 e 4 = e4 e ye x + y x + y dxdy = (e4 e) 4 = 4 (e x+ y + y sin x)dx + (e x + y y cos x)dy där är vägen ABCD sammansa av de räa linjesyckena AB, BC och CD där A = (,), B = (4,), C = (,6) och D = (,) med orieneringen given av punkernas uppräkning y C(,6) B (4,) D(-,) A(,) Vi undersöker om linjeinegralen är oberoende vägen De givna fäle och dess derivaor är koninuerlig x

4 Sudera derivaorna Vi får Q P x och y, där P(x,y) = ex+y + y sin x och Q(x,y) = e x + y y cos x Q x = ex+y + y P sin x och y = ex + y + y sin x injeinegralen är oberoende vägen Vi byer väg Tag den räa linjen Parameerframsäll linjen: Insäning i linjeinegralen ger: x = y = dx = dy = (e x+ y + y sin x)dx + (e x + y y cos x)dy = e SVAR: Den söka linjeinegralen är : = (e x + y + y sin x)dx + (e x + y y cos x)dy = e = e e = e e Anmärkning: En alernaiv lösning är a besämma en poenial U(x, y) En sådan ges av U(x, y) = e x + y y cos x Då är den söka linjeinegralen (e x+ y + y sin x)dx + (e x + y y cos x)dy = U(,) U(,) = e Del I en enkel populaionsmodell för anale individer, P( ), är den relaiva illväxhasigheen konsan, a I en annan modell är den relaiva illväxhasigheen summan av vå ermer Den ena ermen är en posiiv konsan, a, och den andra ermen är proporionell mo populaionen med en negaiv proporionalieskonsan, b En redje modell erhålles genom a korrigera den andra modellen på följande sä: avlägsna e konsan anal per idsenhe, c Säll upp dessa modeller Sudera därefer vad som händer efer lång id, då konsanerna säs ill a = 5, b = och c = 4 Vi säller förs upp de re modellerna Modell : Den relaiva illväxhasigheen = a P() Omformad blir differenialekvaionen = ap () Modell : Den relaiva illväxhasigheen = a + bp() P() Omformad blir differenialekvaionen Modell : Avlägsna e konsan anal per idsenhe c = (a + bp())p() = (a + bp())p() c Nu över ill en analys av de re modellerna Insäning av akuella konsaner Modell : = 5P() Här finns en saionär lösning, P() =, vilken är insabil Populaionen växer obegränsa

5 Modell : = (5 P())P() Här finns vå saionära lösningar, P() = och P() = 5 För sarpopulaioner i inervalle ill 5 är derivaan posiiv och populaionen växande För sarpopulaioner sörre än 5 är derivaan negaiv och populaionen avagande Efer lång id kommer populaionen a gå mo 5 Modell : = (5 P())P() 4 = 5P() P () 4 = (P() )(4 P()) Här finns vå saionära lösningar, P() = och P() = 4 För sarpopulaioner i inervalle ill är derivaan negaiv och populaionen dör u För sarpopulaioner i inervalle ill 4 är derivaan posiiv och populaionen växande För sarpopulaioner sörre än 4 är derivaan negaiv och populaionen avagande Efer lång id kommer populaionen a dö u om sarpopulaionen är mindre än Är sarpopulaionen sörre än kommer den efer lång id a gå mo 4 För sarpopulaioner lika med de saionära lösningarna kommer populaionerna a förbli konsana SVAR: Se ovan a Besäm de lösningar ill differenialekvaionen y + y =, som uppfyller randvillkoren y() = och y () = är sörre än noll, b Visa a de i a) erhållna funkionerna är orogonala på inervalle [,] c Besäm de lösningar ill den pariella differenialekvaionen u = u x som uppfyller randvillkoren u(,) = och u x (,) = a) är sörre än noll gör a vi kan säa = där R Insäning i differenialekvaionen ger y + y = De karakerisiska röerna är r = ±i ösningarna är på formen y = Acos x + Bsin x Vi unyjar de givna randvillkoren Då behövs även y = Asin x + B cos x y() = = A Randvillkoren ger oss följande sysem: y () = = Asin + Bcos (n ) Icke-riviala lösningarna erhålles då cos =, dvs då =, n =,, (n ) x De icke-riviala lösningarna är på formen y = B n sin, n =,, Även linjärkombinaioner av dessa är lösningar (n ) x b) Vi visar a inre produken sin Vi omformar vänsra lede V = (m ) x sin dx =, n m cos (n m) x cos (n+ m ) x Inegraion ger: V = (n m)π sin (n m) x + (n +m )π sin (n+ m ) x (n ) x (m ) x Vi har erhålli sin sin dx =, n m dx [ ] = c) Vi använder variabelseparaion för a besämma lösningar ill den pariella differenialekvaionen u = u x Sä u(x, ) = X(x)T()

6 X (x) Insäning ger: X(x) T () = X (x)t() Denna ekvaion kan skrivas X(x) = T () T( ) = konsan = X (x) X(x)= Den pariella differenialekvaionen övergår i e sysem: T () T() = Här observerar vi a x-ekvaionen med mosvarande randvillkor svarar mo deluppgif a Med = övergår x-ekvaionen i X (x)+ X(x)= Randvillkoren u(,) = och u x (,) = illsammans med variabelseparaionen u(x,) = X(x)T() Ger randvillkoren X() = och X () = (n ) x Dea innebär a X = B n sin, n =,, Vidare har "T-ekvaionen" lösningar på formen T = C n e (n ) ösningar ill den pariella differenialekvaionen är på formen (n ) x u n (x,)=a n sin e (n ), n =,, Även linjärkombinaioner är lösningar (n ) x u(x,) = c n u n (x,) = b n sin n= n= e (n ), n=,, (n ) x SVAR: a) De icke-riviala lösningarna är på formen y = B n sin b) Se ovan c) u(x, ) = b n sin n= (n ) x e (n ), n =,, X = AX Syseme har följande lösningar: X = e e, X = e e, X = 4e 7e och X 4 = 4e + e e + e Vad menas med fundamenallösningar ill syseme av linjära differenialekvaioner Besäm en fundamenalmaris ill syseme Besäm därefer den konsana marisen A å marisen B vara x och ha mulipel egenvärde med endas en illhörande egenvekor K Ange förs en lösning, X, ill syseme X = BX MarisenB är konsan Redovisa därefer hur en av X linjär oberoende lösning ill syseme kan besämmas Fundamenallösningar är linjär oberoende lösningar som spänner upp lösningsrumme För a besämma en fundamenalmaris behövs i dea fall vå linjär oberoende lösningar X och X är linjär oberoende av varandra Däremo ärx linjär oberoende av X Vidare är X 4 en linjärkombinaion av X och X Vi väljer X och X Då bli en fundamenalmaris Φ = e e e e Varje kolonn i fundamenalmarisen uppfyller syseme Vi har ekvaionen Φ = AΦ Vi får den konsana marisen A genom a muliplicera från höger med fundamenalmarisens invers Vi erhåller A = Φ Φ Fundamenalmarisens invers Φ = e e = e e e 4 e e e e Vi får A = e e e e = 4 e e e e 5 En lösning är X = e K Vi ansäer X = e (E + F) där E och F är konsana mariser

7 Insäning i syseme X = BX ger e (E + F) + e E = Be (E + F) : E = BE (B I)E = (B I)E = Idenifiering ger följande sysem: : F + E = BF (B I)F = E (B I) F = Marisen E är en egenvekor ill B och F en generaliserad egenvekor ill B SVAR: En fundamenalmaris är Φ = e e och marisen A = 4 e e 5 För övrig se ovan 4 Ur en kropp definierad av olikheerna x + y z, x + y + z och z sansas u med cylindern 4x + 4y Beräkna den åersående volymen Den åersående volymen ges av rippelinegralen V = dxdydz x y Inegraion med avseende på z ger V = dxdydz = dz dxdy V D z = x + y xy Vi får V = dxdydz { }dxdy = x y x + y V V Skärningen mellan konen och sfären fås ur ekvaionerna: x + y = z och x + y + z = Dea ger (x + y ) =, dvs en cirkel med radien lika med Område i xy-plane är den cirkelring som ges av (x, y): x + y Vi inför polära koordinaer V = D r V = π { r r}rdrd { }rdr d = r r ( r ) r π = r = r = = π 4 + SVAR: Den söka volymen är V = π ( + 4 ) ve = π ( + 4 ) 5 Besäm den generaliserade inegralen cosu ( u) e du u= = Inegralen kan omformas ill följande dubbelinegral: e cosu ( u) du u= = Den inre inegralen är en falningsinegral Den söka inegralen är aplaceransformen för falningen med s = insa e s cosu ( u) du u= = { cos} s { } = s + 4 s = (s + 4)s =

8 Insäning av s = ger den söka inegralen cosu ( u) e du u= = ( + 4) = 7 = SVAR: Dubbelinegralen är lika med 7

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags... Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier KAPITEL 5 Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier Vi inleder med några förberedande exempel. 5.. Cauchys ekvation Den homogena Euler-Cauchys ekvation (Leonhard Euler och

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd. Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över

Läs mer

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att

Läs mer

Kolla baksidan på konvolut för checklista Föreläsning 6

Kolla baksidan på konvolut för checklista Föreläsning 6 0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring. Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

8.4. Integration av trigonometriska uttryck

8.4. Integration av trigonometriska uttryck 68 8 PRIMITIVA FUNKTIONER 8.4. Integration av trigonometriska uttryck Exempel 8.. Bestäm sin 3 x + cos x dx. Trigonometriska ettan tillsammans med ett variabelbyte ger sin 3 x cos + cos x dx = x ( cos

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Fouriermetoder för VT2008

Fouriermetoder för VT2008 Insiuionen för maemaik KTH Fouriermeoder för T VT008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier.... Lie om fel...6.3 Om orogonalie. Parsevals

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elekronik F F3 F4 F Ö Ö P-block Dokumenaion, Seriecom Pulsgivare,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Sar för programmeringsgruppuppgif Kirchoffs lagar Nodanalys Tvåpolsasen

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo. 3D vaenanimering Joakim Julin Deparmen of Compuer Science Åbo Akademi Universiy, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.fi Absrak Denna arikel kommer a presenera e anal olika algorimer för a

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5 freeleaks NpMaE vt2000 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E vt 2000 2 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer