Om exponentialfunktioner och logaritmer

Storlek: px
Starta visningen från sidan:

Download "Om exponentialfunktioner och logaritmer"

Transkript

1 Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens kapiel en fösa gång. b) Sara sedan en andra genomläsning av dea, där du efer varje avsni gör de övningar här som hör ill de avsnie. De flesa av övningarna har, om ine lösningar, så i varje fall anvisningar ill hur uppgifen kan lösas. Ha dock ine för bråom a ia på lösningarna de är ine så man lär sig. Du måse förs noga fundera u vad de du ine försår. c) När du på dea sä läs igenom kapile en andra gång, avslua med en redje genomläsning innan du börjar på de blandade övningarna. Glöm ine a hela iden reflekera kring vad du lär dig. Saker som är svåra a förså kräver ibland a man änker under en längre period. Ibland måse man bara lära sig hur man gör, för a förså lie senare (när hjärnan få mer a arbea med). Till dessa övningar behövs ofa en miniräknare eller mosvarande för a besämma de sluliga svare. Eponenialfunkionen och dess egenskaper Övning Skissera i samma figur in följande grafer = e, = e +, = 2e, = e + 2. Övning 2 Ria i samma figur u de vå graferna = e, = e. Efersom vi ve vad eponenialfunkionens derivaa är, kan vi också derivera urck som innehåller den. Övning 3 Derivera följande funkioner: a) ( 2 + 3)e, b) e / c) e 2 2. d) 2 e /2 De vikigase i kapile är kanske eponenialfunkionens egenskaper (illsammans med logarimfunkionens, men de är samma, fas värom). Övning 4 Konrollera a du själv kan härleda eponenialfunkionens vå grundläggande egenskaper: e + = e e, (e ) = e uan a ia i een. Var dlig med hur man använder a en differenialekvaion har en endig lösning. Nu iar vi närmare på derivaan, som ju är e gränsvärde. Övning 5 Beräkna 0 e 3? I följande övningar behöver man vea a ekvaionen e = löses av = ln och kunna hia denna funkion på en miniräknare (eller mosvarande). De är de grundläggande sambande mellan eponenialfunkionen och den naurliga logarimen. Övning 6 I en viss bakeriekulur ändras anale bakerier med en hasighe som är proporionell mo anale bakerier. Anag a anale bakerier vid en viss idpunk är celler, och vå immar senare har kuluren vui ill 0 8 celler. Besäm anale bakerier som en funkion av iden. Övning 7 För e viss radioakiv ämne är sönderfallshasigheen 20% per sekund. Hur lång id ar de ills hälfen av ämne åersår? Följande övning svarar mo Eempel 2 i huvudeen. Den är vikig a komma ihåg! Övning 8 Under 75 år släppe Fefas Rubber Compan i Massachuses, USA, koninuerlig u 5 on av lösningsmedle oluen per år. Under e år avdunsade ungefär 0% av den mängd oluen som fanns i marken. Hur sor mängd förorening fanns i marken då usläppen upphörde? En i övningar ofa använd varian på dea finns i näsa övning. Övning 9 Man har eperimenell verifiera a en varm kropp, som befinner sig i e kallare medium, svalnar med en hasighe som är proporionell mo emperaurskillnaden (Newons avklningslag). a) Ange en differenialekvaion för kroppens emperaur som beskriver en sådan avklningsprocess, om de omgivande medie har konsan emperaur. Ange därefer en differenialekvaion för emperaurskillnaden mellan medie och kroppen. Vilken variabel är läas a analser: kroppens emperaur eller skillnaden mellan kropp och medium? b) En kropp kls i nollgradig vaen. Om emperauren på 0 minuer sjunker från 25 C ill 20 C, hur lång id ar de då ill a den sjunki ill 5 C? c) En ngräddad kanelbulle (200 C) har efer en minu i rumsemperaur (20 C) svalna ill 52 C. Efer hur lång id kan bullen äas (35 C)? Nedansående övning är e eempel på kol-4-meoden. Skriv en ordenlig lösning som börjar med a plocka u de vikigase från eempel 3 i een. Övning 0 Mäningar från radioakivieen av räkol från Lascaugroan i Frankrike gav år sönderfall/år/g medan levande maeria gav 6.68 sönderfall/år/g. För hur länge sedan gjordes gromålningarna i denna groa? Den naurliga logarimen Följande övning är oerhör vikig. Övning Förklara logarimlagarna uifrån mosvarande lagar för eponenialfunkionen. För a bekana sig med logarimfunkionens graf är följande övning lämplig. Övning 2 Skissera i samma koordinassem följande grafer: = ln, = ln( + ), = ln, = ln( ), = ln Var speciell noggrann med definiionsområde för funkionerna. Här är en övning på räknelagarna. +.

2 Övning 3 Förenkla urcken a) ln( + ) ln + ln, b) ln(e 2 ) ln(/) ln( 2 ), c) e ln(2) ln(/ 2 ) + ln(e ). Övning 4 En person vill säa in en så sor summa pengar i en bank, a han efer 0 år kan lfa kronor. Anag a bankens årsräna hela iden är 8% (räna på räna), hur sor ska de insaa kapiale vara? Vi får också e sandardgränsvärde i origo för logarimen. För a se vad dea sfar på, gör följande övning. Svar och anvisningar Övning Graferna är riade nedan. För a idenifiera dem noera a e + = ee > 2e och a = 2 + e är en parallellförskjuning av = e vå seg uppå. De är allså den enda kurva som ine går mo noll då Övning 5 Beräkna i ur och ordning gränsvärdena ln( + ) ln( + 3) a). b) I een såg vi a för a derivera funkionen π skriver man lämpligen om den som π = e π ln och deriverar denna funkion. Vi får då derivaan π π. Övning 6 Använd samma idé för a derivera funkionen Några illämpningar av logarimen De vikiga i dea avsni är a kunna besvara följande fråga. Övning 7 Ria följande samband så a de framsår som räa linjer: a) = 2, b) = 2, c) = 5.25, d) = 4/, e) = /2 f ) =, g) = 0.33, h) = 2 /2. Du ska allså välja alarna lämplig. Ange i varje fall ekvaionen för linjen. Övning 2 Båda funkionerna är jämna, dvs f ( ) = f (). De beder a vi kan ria upp hur den ser u ill höger om -aeln, och sedan spegla den kurvan i jus -alen. Den blå kurvan (som är överall) är = e, den röda (som är överall) är = e. Noera a ingen av funkionerna är deriverbar i origo! 4 3 Övning 8 Beräkna följande gränsvärden a) ( + )2 b) ( + 2 ) 2 Vad väer snabbas? Övning 9 Beräkna följande gränsvärden (även oegenliga) a) e 2 + 6, b) + (2.5) + ln + 2e + 0 Övning 20 Skissera grafen ill funkionen f () = e / i sora drag Övning 3 Lå D beeckna derivaa. a) Enlig produkregeln har vi a derivaan är D( 2 + 3)e + ( 2 + 3)D(e ) = e ( ). b) Enlig formeln för derivaion av en kvo har vi a derivaan är D(e e D() 2 = e ( + ) 2 c) Enlig kedjeregeln har vi a derivaan är e 2 2 D( 2 2) = 2( )e 2 2 d) Här kombinerar vi produkregeln och kedjeregeln: D( 2 )e /2 + 2 e /2 D( /2) = e /2 (2 + 2 ( 2 2 ) = 2 e /2 ( 2 + 3/2 + 4). Övning 4 De här måse du gå igenom genom a sudera huvudeen. Dessa formler är nckeln ill a förså eponenialfunkionen!

3 Övning 5 De du ska se är a gränsvärde är desamma som derivaan av f () = e 3 i = 0: så svare är 3. f f () f (0) e (0) = = 3, Övning 6 Om () är anale bakerier vid iden och om vi sarar klockan då vi har celler, så gäller a () = k(), (0) = Här är k okän, men kan besämmas av villkore i uppgifen om vi löser differenialekvaionen. Vi ve a lösningen är och de åersående villkore är a () = e k (2) = e 2k = 0 8 e 2k = 25 e k = 5. Här kan vi urcka k i logarimer, men behöver ine göra de. Vi har nämligen a den allmänna lösningen är () = (e k ) = Övning 7 Ekvaionen för () som är anale aomer som ine sönderfalli vid iden är () = 0.2() vars lösning är () = (0)e 0.2. Den idpunk vid vilken hälfen har sönderfalli ges då av ekvaionen (0) 2 = (0)e 0.2 e /5 = 2 = 5 ln(2). Övning 8 Lå () vara mängden (mä i on) förorening i marken vid iden, räkna från när fabriken ogs i bruk. Då ger massbalans a så länge fabriken är i gång har vi differenialekvaionen () = 5 0.(), (0) = 0. För a lösa den säer vi z() = 5 ()/0. Då gäller a z () = ()/0 = z()/0, z(0) = 5 (0)/0 = 5. De beder a z() = 5e /0 5 ()/0 = 5e /0 () = 50( e /0 ). Vi får därför svare on. (75) = 50( e 7.5 ) 49.9 Övning 9 Lå T() vara kroppens emperaur och T m omgivningens emperaur. a) Lagen innebär a de finns e k > 0 sådan a T () = k(t() T m ). Om vi säer D() = T() T m så gäller a D () = T (), och allså a D () = kd(). Den andra av dessa ekvaioner kan vi lösningen på: vilken i sin ur ger oss T(). D() = D(0)e k, b) I dea eempel är T m = 0, så T() = D(). Differenialekvaionen är T () = kt() T() = T(0)e k. Villkoren i uppgifen är a T(0) = 25 och T(0) = 20, där de senare besämmer k: 20 = T(0) = 25e 0k e 0k = 5 4 k = 0 ln 5 4. Den allmänna lösningen på ekvaionen är T() = 25e k, med dea k. Ti vill då hia de då T() = 5: 5 = 25e k e k = 5 3 = k ln 5 3 = 0 ln(5/3) ln(5/4), vilke är approimaiv 23 minuer. De ar allså erligare 3 minuer. c) Lå T() vara bullens emperaur i Celsius. Då är T(0) = 200 och T () = k(t() 20) T() = e k. Vi besämmer k av a e k = 52 e k = k = ln Tiden vi söker är lösningen på e k = 35, allså minuer. = k ln 80 5 = ln(80/5) ln(80/32) 8 Övning 0 Ekvaionen för radioakiv kol är N = p λn, λ = , p = 6.68λ så länge räde lever. Därefer blir ekvaionen N = λn med sarvärde N(0) = p/λ = Vi ska därför hia de som är sådan a 0.97 = 6.68e λ = λ ln år. De var så länge sedan gromålningarna gjordes. Övning Dea är en oerhör vikig sak a kunna förklara på sående fo. I korhe, om vi skriver = e α och E β så gäller a e α+β = e α e β = α + β = ln(). Men α = ln och β = ln, varur logarimlagen ln() = ln + ln följer. För mer dealjer, se Arbesblade om logarimlagar. Övning 2 Definiionsområdena är (från vänser ill höger) (0, ), (, ), (0, ), (, 0), (, ). Vidare gäller a försa och redje är spegelbild av varandra i -alen, liksom andra och feme (därför a ln + = ln( + ).

4 2 Övning 8 Vi använder här diverse inuiiv självklara påsåenden om gränsvärden. Självklara om vi förs skriver om urcken Övning 3 Vi kan förs noera a i alla fall krävs a > 0 efersom mins en erm kräver dea. a) ln( + /) ln + ln = ln(( + /)) = ln( + ). b) ln(e 2 ) ln(/) ln( 2 ) = ln(e 2 ) + ln 2 ) = ln( e2 ) = ln(e 2 ) = 2. c) e ln(2) ln(/ 2 ) + ln e = 2 + ln 2 + = ln. Övning 4 Dea handlar om derivaan av logarim-funkionen a) Dea är derivaan i = av ln, allså är gränsvärde. Alernaiv är gränsvärde derivaan i = 0 av funkionen ln( + ). Dea är ofare e bäre sä a änka på urcke. b) Dea är derivaan i = 0 av ln( + 3). Svare är allså 3. Övning 5 Lå f () =. Vi kan då skriva om den som f () = (e ln ) = e ln, där den andra likheen använder poenslagen ( a ) b = ab. Kedjeregeln ger nu f () = e ln ( ln ) = (ln + ). Kom ihåg de här resulae! Eller snarare, ricke. Övning 6 Vi får följande samband i de olika fallen: a) ln = (ln 2). Ria i e linlog-diagram (linjär skala på -aeln, logarimisk på -aeln). b) ln = 2 ln. Ria i e loglog-diagram. c) ln = (ln.25) + ln 5. Ria i e loglog-diagram. d) ln = ln 4 ln. Ria i e loglog-diagram. e) ln = (ln 2). Ria i e linlog-diagram. f) ln = 2 ln. Ria i e loglog-diagram. g) ln = (ln 0.33). Ria i e linlog-diagram. Noera a linjen är avagande, efersom ln 0.33 < 0. h) ln = ln 2 2 ln. Ria i e loglog-diagram. Övning 7 Vi ve a e = ( + ). Dea ger a) ( + )2 = ( ( + )) 2 e 2 då. Här har vi använ a om f () A då och g är en koninuerlig funkion, så gäller a g( f ()) g(a) då. A så är falle berakar vi som självklar, även om de kräver e bevis ifrån en ordenlig definiion av gränsvärden. b) När gäller även a = 2. Vi kan därför ba variabel som nedan ( + 2 ) = ( + )/2 = ( ( + ) ) /2 = e. a) Från huvudeen ve vi a av de ermer som ingår väer 2 snabbas mo oändligheen. Vi dividerar därför både äljare och nämnare med 2 : När är sor kommer här alla ermer som beror av a gå mo noll, så gränsvärde blir =. b) Här har vi vå eponenialfunkioner: e och (2.5). Efersom e > 2.5 > 2, så är de e som väer snabbas. Vi dividerar därför med den och får + ( 2.5 e ) + ln e = e då. Näsa uppgif är väldig lik Eempel 5 i huvudeen (och kan härledas ur de, uan några räkningar om man vill). Övning 9 Sä f () = e /. De försa vi ser är a den ine är definierad i = 0. Vi har a och (sä = /) e 0 e / = + = 0 0 e / = e = efersom e väer forare mo oändligheen än. Vad gäller sneda asmpoer har vi a a) i gäller a e k = / =, m = (e / e ) = = (e ) (0) =, 0 + b) i gäller a m = k = e / =, (e / ) = e = (e ) (0) =. 0 Vi ser allså a vi har asmpoen = i båda oändligheerna. Åersår a finna evenuella saionära punker. Vi har f () = e / + e / 2 = e / ( + )/, så vi har endas en saionär punk, nämligen då =. Vi får följande eckenabell Dea ber oss följande figur : f () : + 0 f () : e

5

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik. Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

Lösningar till tentamen i Kärnkemi ak den 21 april 2001

Lösningar till tentamen i Kärnkemi ak den 21 april 2001 Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Modellering av Dynamiska system Ställ frågor!

Modellering av Dynamiska system Ställ frågor! Modellering av Dynamiska sysem -2014 Säll frågor! Beng Carlsson bc@i.uu.se Rum 2211 Inrodukion #1 Sysem och deras modeller Dynamiska och saiska sysem Användning av modeller Maemaisk modellering E modelleringsexempel

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Tunga lyft och lite skäll för den som fixar felen

Tunga lyft och lite skäll för den som fixar felen Tunga lyf och lie skäll för den som fixar felen De fixar soppe i avloppe, de rasiga gångjärne, den läckande vämaskinen. De blir uskällda, igenkända, välkomnade. A jobba hemma hos människor har sina särskilda

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd. Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Mät upp- och urladdning av kondensatorer

Mät upp- och urladdning av kondensatorer elab011a Namn Daum Handledarens sign. Laboraion Mä upp- och urladdning av kondensaorer Varför denna laboraion? Oscilloskope är e vikig insrumen för a sudera kurvformer. Avsiken med den här laboraionen

Läs mer

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,

Läs mer

Truckar och trafik farligt för förare

Truckar och trafik farligt för förare De händer en del i rafiken. För några år sedan körde en av Peer Swärdhs arbeskamraer av vägen. Pressade ider, ruckar och unga fordon. På åkerie finns många risker. Arbesgivaren är ansvarig för arbesmiljön,

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

FAQ. frequently asked questions

FAQ. frequently asked questions FAQ frequenly asked quesions På de följande sidorna har jag samla ihop några av de frågor jag under årens lopp få av sudener när diverse olika problem uppså i arbee med SPSS. De saisiska problemen har

Läs mer

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags... Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Pensionsåldern och individens konsumtion och sparande

Pensionsåldern och individens konsumtion och sparande Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson

Läs mer

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB Rörelse Hur kan en acceleraion ara negai? Vad innebär de a en rörelse är likformig? Kan å händelser ara samidiga, men ändå ine? Vilken acceleraion får en fri fallande kropp? Vad menas med likformig accelererad

Läs mer

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar Kan arbesmarknadens parer minska jämviksarbeslösheen? Teori och modellsimuleringar Göran Hjelm * Working aper No.99, Dec 2006 Ugiven av Konjunkurinsiue Sockholm 2006 * Analysen i denna rappor bygger på

Läs mer

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys Skuldkrisen Föreläsning KAU Bo Sjö Världsbanken och IMF Grund i planeringen efer 2:a världskrige Världsbanken Ger (hårda) lån ill sora infrasrukurprojek i uvecklingsländer. Hisorisk se, lyckas bra, lånen

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

Realtidsuppdaterad fristation

Realtidsuppdaterad fristation Realidsuppdaerad frisaion Korrelaionsanalys Juni Milan Horemuz Kungliga Tekniska högskolan, Insiuion för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformaik Teknikringen 7, SE 44 Sockholm

Läs mer

Många risker när bilen mals till plåt

Många risker när bilen mals till plåt Många risker när bilen mals ill plå Lasbilar kommer med ujäna bilar och anna skro. En griplasare lyfer upp de på e rullband och all glider in i en kvarn. Där mals meallen ill småbiar. De är ung och farlig.

Läs mer

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual Elekoniska skydd Lågspänningsuusning Användarmanual Building a Newavancer Elecicl'élecicié World Qui fai auan? Elekoniska skydd Inodukion ill de elekoniska skydde Lära känna de elekoniska skydde Funkionsöversik

Läs mer

Vad är den naturliga räntan?

Vad är den naturliga räntan? penning- och valuapoliik 20:2 Vad är den naurliga ränan? Henrik Lundvall och Andreas Wesermark Förfaarna är verksamma vid avdelningen för penningpoliik, Sveriges riksbank. Vilken realräna bör en cenralbank

Läs mer

Tjänsteprisindex för varulagring och magasinering

Tjänsteprisindex för varulagring och magasinering Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005

Läs mer

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svesning Examensarbee uför i Reglereknik av Andreas Pilkvis LiTH-ISY-EX-- Linköping Analys och modellering av ljusbåglängdsregleringen

Läs mer

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators Objecs Firs Wih Java A Pracical Inroducion Using BlueJ 4. Grouping objecs Collecions och ieraors Innehåll Collecions Loopar Ieraorer Arrays Objecs Firs wih Java - A Pracical Inroducion using BlueJ, David

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån 2012-10-30 Veenskapseori (4,5hp) HT12 Enkäresula Enkä: Saus: Uvärdering, VeTer, HT12 öppen Daum: 2012-10-30 14:07:01 Grupp: Besvarad av: 19(60) (31%) Akiverade delagare (Veenskapseori (4,5hp) HT1 2) 1.

Läs mer

Föreläsning 8. Kap 7,1 7,2

Föreläsning 8. Kap 7,1 7,2 Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y

Läs mer

Tjänsteprisindex (TPI) 2010 PR0801

Tjänsteprisindex (TPI) 2010 PR0801 Ekonomisk saisik/ Enheen för prissaisik 2010-06-22 1(12) Tjänseprisindex (TP) 2010 PR0801 denna beskrivning redovisas förs allmänna uppgifer om undersökningen sam dess syfe, regelverk och hisorik. Därefer

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

Damm och buller när avfall blir el

Damm och buller när avfall blir el Damm och buller när avfall blir el Här blir avfall värme och el, rä och flis eldas i sora pannor. De är rör med ånga, hjullasare och långradare, damm och buller. En miljö som både kan ge skador och sjukdomar

Läs mer

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning Hans Andersson (FP), ordförande i Tiohundra nämnden varanna år och Karin Thalén, förvalningschef TioHundra bakom solarna som symboliserar a ingen ska falla mellan solar inom TioHundra. Ingen åervändo TioHundra

Läs mer

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1.

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjär hölje Definiion. (LINJÄR KOMBINATION Lå V ara e ekorrm. En ekor w är linjär kombinaion a,,, nn om de finn kalärer (al,,, nn å a ww nn nn Eempel.

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

Föreläsning 7 Kap G71 Statistik B

Föreläsning 7 Kap G71 Statistik B Föreläsning 7 Kap 6.1-6.7 732G71 aisik B Muliplikaiv modell i Miniab Time eries Decomposiion for Försäljning Muliplicaive Model Accurac Measures Från föreläsning 6 Daa Försäljning Lengh 36 NMissing 0 MAPE

Läs mer

Glada barnröster kan bli för höga

Glada barnröster kan bli för höga Glada barnröser kan bli för höga På Silverbäckens förskola är ambiionerna höga. Här vill man mycke, och kanske är de jus därför de blir sressig ibland. De säger Therese Wesin, barnsköare och skyddsombud.

Läs mer

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-

Läs mer

Upphandlingar inom Sundsvalls kommun

Upphandlingar inom Sundsvalls kommun Upphandlingar inom Sundsvalls kommun 1 Innehåll Upphandlingar inom Sundsvalls kommun 3 Kommunala upphandlingar - vad är de? 4 Kommunkoncernens upphandlingspolicy 5 Vad är e ramaval? 6 Vad gäller när du

Läs mer

Håkan Pramsten, Länsförsäkringar 2003-09-14

Håkan Pramsten, Länsförsäkringar 2003-09-14 1 Drifsredovisning inom skadeförsäkring - föreläsningsaneckningar ill kursavsnie Drifsredovisning i kursen Försäkringsredovi s- ning, hösen 2004 (Preliminär version) Håkan Pramsen, Länsförsäkringar 2003-09-14

Läs mer

Timmar, kapital och teknologi vad betyder mest? Bilaga till Långtidsutredningen SOU 2008:14

Timmar, kapital och teknologi vad betyder mest? Bilaga till Långtidsutredningen SOU 2008:14 Timmar, kapial och eknologi vad beyder mes? Bilaga ill Långidsuredningen SOU 2008:14 Förord Långidsuredningen 2008 uarbeas inom Finansdeparemene under ledning av Srukurenheen. I samband med uredningen

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Förord: Sammanfattning:

Förord: Sammanfattning: Förord: Denna uppsas har illkommi sedan uppsasförfaarna blivi konakade av Elecrolux med en förfrågan om a undersöka saisikmodulen i deras nyimplemenerade affärssysem. Vi vill därför acka vår handledare

Läs mer

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen Chalmers Teknisk fysik Teknisk maemaik Arkiekur och eknik Maemaik- och fysikprove 2010 ysikdelen Provid: 2h. Hjälpmedel: inga. På sisa sidan finns en lisa över fysikaliska konsaner m.m. som evenuell kan

Läs mer

5 VÄaxelkurser, in ation och räantor vid exibla priser {e ekter pºa lºang sikt

5 VÄaxelkurser, in ation och räantor vid exibla priser {e ekter pºa lºang sikt 5 VÄaxelkurser, in aion och räanor vid exibla priser {e eker pºa lºang sik Som vi idigare noera anar vi a den reala väaxelkursen pºa lºang sik Äar oberoende av penningmäangden och väaxelkursen beror dºa

Läs mer

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant LÖSNINGSFÖRSLAG Fysik: Fysik och Kapiel 4 4 nergi nergiprincipen 4. nergin bearas. Allså är före efer,9,, ilke ger,9,,j, 6 J Sar:,6 J 3 3 Arbee, effek och erkningsgrad 4. San: Uför arbee är lika sor so

Läs mer

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning VA-TAXA 2000 Taxa för Moravaen AB:s allmänna vaen- och avloppsanläggning Taxa för Moravaen AB:s Allmänna vaen- och avloppsanläggning 4 4.1 Avgif as u för nedan angivna ändamål: Anagen av Moravaen AB:s

Läs mer

1.9 Om vi studerar penningmarknaden: Antag att real BNP (Y) ökar då förväntas att jämviktsräntan ökar/minskar/är oförändrad.

1.9 Om vi studerar penningmarknaden: Antag att real BNP (Y) ökar då förväntas att jämviktsräntan ökar/minskar/är oförändrad. RÄTTNING: För a få poäng på Fråga krävs hel rä svar per deluppgif. Dvs. svare på en deluppgif måse vara hel rä för a sudenen skall få poäng ( poäng). Varje deluppgif ger en poäng. Anal deluppgifer är 2.

Läs mer

Ha kul på jobbet är också arbetsmiljö

Ha kul på jobbet är också arbetsmiljö Tväeri, kök, recepion, konor, hoellrum Här finns många olika arbesuppgifer och risker. Och på jus de här hoelle finns e sälle där de allid är minus fem grader en isbar. Ha kul på jobbe är också arbesmiljö

Läs mer

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från Fasbasindex--Kedjeindex Index av de slag vi hiinills agi upp kallas fasbasindex. Vikbesämningar ugår från priser och/eller kvanieer under basåre. Vid långa indexserier blir dea e problem. Vikerna måse

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn ByggeboNy Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn Geingplåga Arbesförmedlingen på plas i Alvarsberg Kenh i hyresgäsernas jäns Sark posiiv rend Den posiiva renden håller i sig. Under sommaren har

Läs mer

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet 1 File = SweTrans_RuMarch09Lohmander_090316 ETT ORD KORRIGERAT 090316_2035 (7 sidor inklusive figur) Sraegiska möjligheer för skogssekorn i Ryssland med fokus på ekonomisk opimering, energi och uhållighe

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

Betalningsbalansen. Tredje kvartalet 2010

Betalningsbalansen. Tredje kvartalet 2010 Bealningsbalansen Tredje kvarale 2010 Bealningsbalansen Tredje kvarale 2010 Saisiska cenralbyrån 2010 Balance of Paymens. Third quarer 2010 Saisics Sweden 2010 Producen Producer Saisiska cenralbyrån,

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Srömkreslära Mäinsrumen Baerier Liksrömsnä Tvåpolsasen KK1 LAB1 Mäning av U och I F/Ö6 F/Ö7 Magnekres Kondensaor Transiener KK LAB Tvåpol mä och sim F/Ö8 F/Ö9 KK3

Läs mer

Betalningsbalansen. Andra kvartalet 2012

Betalningsbalansen. Andra kvartalet 2012 Bealningsbalansen Andra kvarale 2012 Bealningsbalansen Andra kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Second quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

Sebastian det är jag det! eller Hut Hut den Ovala bollen

Sebastian det är jag det! eller Hut Hut den Ovala bollen i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea

Läs mer

Uppgift 2 (max 5p) Beskriv orderklyvning och överlappning och skillnader mellan dessa. Härled de formler som ingår i respektive metod.

Uppgift 2 (max 5p) Beskriv orderklyvning och överlappning och skillnader mellan dessa. Härled de formler som ingår i respektive metod. Exempelena nr 3 ppgif (max 5p) ppgifen går u på a förklara några cenrala begrepp inom kursen. Svara korfaa men kärnfull och ange en förklaring på e fåal meningar som ydlig beskriver var och e av de fem

Läs mer

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik

Läs mer

Jämställdhet och ekonomisk tillväxt En studie av kvinnlig sysselsättning och tillväxt i EU-15

Jämställdhet och ekonomisk tillväxt En studie av kvinnlig sysselsättning och tillväxt i EU-15 Examensarbee kandidanivå NEKK01 15 hp Sepember 2008 Naionalekonomiska insiuionen Jämsälldhe och ekonomisk illväx En sudie av kvinnlig sysselsäning och illväx i EU-15 Förfaare: Sofia Bill Handledare: Ponus

Läs mer

Personlig assistans en billig och effektiv form av valfrihet, egenmakt och integritet

Personlig assistans en billig och effektiv form av valfrihet, egenmakt och integritet Personlig assisans en billig och effekiv form av valfrihe, egenmak och inegrie En jämförelse mellan kosnaderna för personlig assisans och kommunal hemjäns 1 Denna rappor är en försa del av e projek vars

Läs mer

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002 Egnahemsposen i konsumenprisindex En granskning av KPI-uredningens förslag Specialsudie Nr 2, maj 22 Ugiven av Konjunkurinsiue Sockholm 22 Konjunkurinsiue (KI) gör analyser och prognoser över den svenska

Läs mer

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28 43.036/1 NR 10: Regulaor för lufkondiionering (värme/kyla) Kompak regulaor för lufkondiionering med pulsade ugångar för 2- och 4-rörs sysem för värme och kyla i separaa rum. Lämplig för alla yper av byggnader.

Läs mer

3.1 Derivator och deriveringsregler

3.1 Derivator och deriveringsregler 3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,

Läs mer