Sammanfattning av STATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Sammanfattning av STATIK"

Transkript

1 Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea en vekningslinje. PSTULAT: En kaft ä en vektsthet tilldnad en angeppspunkt. vekningslinje P angeppspunkt En kaftvekt sm angipe i P kan skivas = x e x + y e y + z e z dä 2 x 2 y 2 z ä kaftens stlek (belpp). z e z e x P e y y x m två elle flea kafte angipe i samma punkt P, ä deas summa esultanten angipande i P. (Paallellgamlagen) R= P En kaftvekts pjektin på en iktning med enhetsvektn e fås u skaläpdukten 1 2 R e 1 cs cs e

2 ment: Studea ett kaftpa. Kaftena ta ut vaanda, men kaftpaet ha ändå en fysikalisk vekan; det fösöke vida kppen. h - Denna vidande vekan beskivs av kaftpaets mment, vas stlek ä : h Stleken av mmentet av en kaft med avseende på punkten ä d d Detta kan fmaliseas till följande definitin. Låt = x e x + y e y + z e z vaa en kaft angipande i punkten P, dä P ges av lägesvektn = x e x + y e y + z e z. mentet av en kaft med avseende på punkten definieas sm vektn z e z d P y x e x e y Enligt definitinen av kysspdukt så se vi att ä en vekt sm ä vinkelät mt planet sm ch spänne upp. Belppet (stleken) av vektn ges av: sin d dä d kallas fö hävamen.,

3 mentet av en kaft med avseende på en axel definieas sm skaläpdukten λ e dä enligt tidigae. Således, mmentet med avseende på en axel ä mmentvektns pjektin på axeln. e mentet av ett kaftpa: 1-2 Kaftpaets mment med avseende på punkten ä: ( ) (1 ) Kaftpaets mment ä beende av! Slutsats: Kaftpasmmentet ä detsamma fö alla punkte, dvs en fi vekt ( kan således föflyttas med bibehållen iktning ch belpp till en gdtyckligt punkt). Kaftpasmmentvekte buka betecknas elle C (eng. cuple). -

4 Reduktin av kaftsystem: öflyttning av en kaft fån punkten A till kan göas genm att addea ch - i punkten. A A - ch bilda ett kaftpa A Kaftsystemen van ä ekvimmenta (ekvivalenta u kaft ch mmentsynpunkt). Betakta nu ett kaftsystem bestående av två kafte 1 ch 2 ch två kaftpasmment C 1 ch C 2 enligt figuen. vanstående kan nu tillämpas fö att bilda ett educeat kaftsystem. Detta system bestå av enbat en kaft R ch ett kaftpasmment. Kaftsystemet sägs vaa educeat med avseende på punkten. C 1 1 C C 2 C R R 1 2 dä 1 2 C C ch

5 Betakta en filagd stel kpp dä samtliga ytte kafte 1,..., n ch samtliga ytte kaftpasmment C 1,,C m sm veka på kppen ä inkludeat. a) C 1 1 n 1 C m n Reducea kaftsystemet med avseende på punkten. b) R R n k 1 n k 1 k k k m k 1 C k PSTULAT: ö en stel kpp gälle att kaftsystemen a) ch b) van ha samma vekan på kppen, dvs de esultea i samma öelse. U pstulatet van följe bl.a. att m en kaft veka på en stel kpp kan kaften föflyttas längs kaftens vekningslinje utan att dess vekan på kppen ändas. stel kpp Statisk jämvikt Ett nllsystem definieas sm ett kaftsystem dä R=0 ch =0. En stel kpp sägs befinna sig i statisk jämvikt m systemet av ytte kafte ch kaftpasmment bilda ett nllsystem, dvs m R 0 0 Detta ä ett nödvändigt villk fö att en kpp skall befinna sig i ftvaig vila. Reduceingspunkten kan väljas gdtyckligt ch man buka däfö utelämna ch enbat skiva R=0 ch =0.

6 Tw-fce membe: öljande följe u jämviktsvillket van ch kan i många fall föenkla jämviktsbeäkningana vid kmpliceade stuktue. m en stång med fösumba massa ä i jämvikt ch enbat belastas med kafte i ändana, ä dessa kafte iktade i stångens längdiktning. Detta kan genealiseas vidae till en kpp med gdtycklig fm. I detta fall måste kaftena gå längs en tänkt linje mellan de båda kaftenas angeppspunkte. - - ektsymble ekte betecknas vanligen med bldface, elle sm,. ektenas skaläa kmpnente betecknas med,. id pblemlösning används fta av paktiska skäl följande symble elle Detta betyde att vektena ch ä definieade enligt nedan e e e e dä e ä enhetsvektn i pilens iktning ch ch ä vektenas kmpnente (vilka äknas sm psitiva i pilens iktning). iläggning: ö att ehålla det kaftsystem sm veka på en kpp så används en metd sm kallas filäggning. id filäggning plckas kppen bt fån sin mgivning ch mgivningens vekan på kppen esätts med kafte ch kaftpasmment. Abetsgång vid filäggning: 1) Bestäm vilken kpp sm skall filäggas. 2) Esätt mgivningens vekan på kppen med kafte ch kaftpasmment. Rita ut appliceade kafte ch kaftpasmment i givna iktninga (hit äknas även tyngdkaften mg angipande i kppens masscentum G). Reaktinen vid stöd ch lede etc. mdelleas med kafte ch kaftpasmment enligt igu 3/1 sid ch igu 3/8 sid 147 i eiam (Statics). vanstående kan även tillämpas fö ett system av kppa, se eiam (Statics) sid Nedan ges någa exempel.

7 Sist i detta häfte finns någa övningsuppgifte på just filäggning. Det ekmmendeas stakt att nga abeta igenm dessa, ty en kekt filäggning utgö basen vid pblemlösning.

8 iktin: Betakta två stäva yt sm ä i kntakt enligt figuen. e t e n A A N kntaktställets nmal kntaktställets tangentplan ä fiktinskaften ch N nmalkaften, dä =e t ch N=Ne n ( N > 0 vid kntakt). iktinskaften ä iktad så att den mtveka glidning elle tendens till glidning längs kntaktställets tangentplan. Culmbs fiktinslaga illk fö att glidning ej skall intäda μs N μ s dä ä den statiska fiktinskefficienten. id gänsfallet då μs N sägs fiktinen vaa fullt utbildad (gänsfallet fö begynnande glidning) iktin vid glidning μk N μ k dä ä den kinetiska fiktinskefficienten. Unde glidning veka akt mtsatt kntaktställets glidhastighet asscentum: Givet en stel kpp enligt nedan dä vlymselementet d ha massan dm=d ch ä densiteten. Kppens masscentum G = x G e x +y G e y +z G e z definieas sm punkten G ρd ρd z d x y

9 PSTULAT: De pstulat, definitine ch satse sm uppställts fö kaftsystem bestående av ett begänsat antal kafte gälle även fö kntinueliga kaftsystem (kaftfält). Betakta en kpp med massan m ρd sm befinne sig i tyngdkaftfältet. Tyngdkaften sm veka på vaje vlymselement d ä dg, dä g ä tyngdacceleatinen. an kan fta med tilläcklig nggannhet anta att tyngdacceleatinen g ä en knstant vekt inm ett begänsat måde. Kaftsystemen nedan ä då ekvimmenta m vi låte ttala tyngdkaften =mg ha sin angeppspunkt i kppens masscentum G. Detta kan inses genm att beäkna ttala kaften (dä g ä en knstant vekt) g ρd g ρd m g ch ttala mmentet med avseende på g ρd en enligt definitinen av masscentum ä m G ρd g ρd m G vilket ge g G m g d G d g g G mg g Således kaftsystemen ha samma ttalkaft ch samma ttalmment med avseende på, dvs de ä ekvimmenta. Att masscentum ha denna egenskap i ett knstant tyngdkaftfält mtivea benämningen tyngdpunkt (m vi educea det vänsta kaftsystemet till G fås ett kaftsystem bestående enbat av en kaft mg, dvs vi kan balansea kppen via ett mmentfitt stöd vid G).

10

11

12

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Lösningar till övningsuppgifter centralrörelse och Magnetism

Lösningar till övningsuppgifter centralrörelse och Magnetism Lösninga till öningsuppgifte centalöelse ch Magnetism Centalöelse G1 Centipetalacceleatinen a = = 5, m/s = 15,9 m/s 1,7 Sa: 16 m/s G4 (3,5 10 3 ) c 0,045 a m/s =,7 10 8 m/s Sa:,7 10 8 m/s 50 G7 = 50 km/h

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar 1(5) & nt s MLJösÄKRtNG INNENALLER MILJöPOLICY ch ARBETSMILJöPOLIGY K:\Malla MILJOPOLICY 2(5) # nt s Denna miljöplicy gälle Elcente. Syfte Elcente ska följa aktuell miljölagstiftning, egle, kav ch nme

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Heureka Fysik 2, Utgåva 1:1

Heureka Fysik 2, Utgåva 1:1 Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

rbyggqhnrusn Avtalsinformation för:

rbyggqhnrusn Avtalsinformation för: BYGGQHnusn Datum 2014-09-24 Tygg-Hansa Cae Kundsuppt 10626 Stckhlm Telefn:0711-111 690 www.tygghansa.se Lindhaga Samfällighetsföening Sten Göan Palm Rågknsgatan 56 43140 Mölndal Avtalsinfmatin fö: Lindhaga

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1. 1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Föreläsning 7 Molekyler

Föreläsning 7 Molekyler Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta

Läs mer

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget

Läs mer

dv dt a 1 positiv ger acc riktad nedåt. m/s a 3 negativ ger acc riktad uppåt

dv dt a 1 positiv ger acc riktad nedåt. m/s a 3 negativ ger acc riktad uppåt Tentamen FY58 Mekanik HI -6- En hissreparatör under utbildning har lagat en hiss i ett höghus För att prva den nyreparerade hissen åker han ned med hissen Deras fart sm funktin av tid är plttad i figuren

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109 PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012 Energi Kemi ch bikemi för K, Kf ch Bt 2012 Föreläsning 2.5 Kemiska reaktiner Meddelande 1. Justerat labschema Lv5-7. Berör K6, Bt6, Bt2, Kf3 2. Mittmötet. Rättning av inlämningsuppgifter. Knstruktiv kritik

Läs mer

Projekt sent anmälda barn

Projekt sent anmälda barn 2013-03-04 Pjekt sent anmälda ban Bakgund I Åsappt 2012 fö Kvalitetsegiste CPUP anges syftet vaa: Gunden fö CPUP ä att alla ban med CP identifieas ch ebjuds deltagande så snat CP-liknande symtm ses, dvs.

Läs mer

Inlämningsuppgifter till 21/2 2003

Inlämningsuppgifter till 21/2 2003 Inlämningsuppgifte till / 003. Föenkla µ / µ / Lena A.,9,0,7,83 Niklas E.,5,,73,8 My E. 9,3,,7,9 Sanda F. 8,33a,3,7,9. Skiv om följande uttyck utan ottecken i nämnaen: x + x 3. Skiv om utan ottecken i

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

KEMA02 Oorganisk kemi grundkurs F9

KEMA02 Oorganisk kemi grundkurs F9 KEMA02 Organisk kemi grundkurs F9 Elektrkemi Redxreaktiner ch Galvaniska er 1 Atkins & Jnes kap 13.1 13.5 Översikt kapitel 13.1 13.5 Redxreaktiner Halvreaktiner Balansering av redxreaktiner Galvaniska

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

KEMA02 Oorganisk kemi grundkurs F10

KEMA02 Oorganisk kemi grundkurs F10 KEMA02 Organisk kemi grundkurs F10 Elektrkemi Redxreaktiner ch Galvaniska er 2 Atkins & Jnes kap 13.6 13.9 E = E RT nf lnq Walther Nernst 1864 1941. Nbelpris i kemi 1920. Senast Redxreaktiner Halvreaktiner

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

Kap Kemisk Termodynamik

Kap Kemisk Termodynamik Kap. 7+8. Kemsk emdynamk 7.1 Fösta huvudsatsen emdynamk: Vämets öelse, läan m enegns fme ch mvandlnga Eneg: Sthet sm medfö fömåga att utätta abete Abete (w): w F dx elle dw F dx (Pcess sm lede tll öelse

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

Dynamiken hos stela kroppar

Dynamiken hos stela kroppar Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

KEMA02 Oorganisk kemi grundkurs F11

KEMA02 Oorganisk kemi grundkurs F11 KEMA02 Organisk kemi grundkurs F11 Elektrkemi Jnselektiva elektrder, elektrlys, krrsin, celler Atkins & Jnes kap 13.10 13.15 Senast Galvaniska celler Nrmalptentialer Elektrkemiska spänningsserien Nrmalptentialer

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat. Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Mekanik Laboration 3

Mekanik Laboration 3 Götebogs Uniesitet Natuetenskapligt baså, NBAF 9/9 8 Institutionen fö fsik Inga Albinsson Natuetenskapligt baså, NBAF Laboationen genomfös i guppe om te och omfatta 4 olika fösök som totalt genomfös unde

Läs mer

Tentamen i EJ1200 Eleffektsystem, 6 hp

Tentamen i EJ1200 Eleffektsystem, 6 hp Elekto- och yteteknik Elektika akine och effektelektonik Stefan Ötlund 7745 Tentaen i EJ Eleffektyte, 6 hp Den juni, 4.-9. Räknedoa, foelaling och ateatik handbok (eta) få använda. Tentaen kan ge axialt

Läs mer

Justering av tillslag:

Justering av tillslag: på anslagssidan Utan tillslag Justering av tillslag: 90 Önskas tillslag, ska huvudarmen stå 90 grader mt stängarhuset när dörren är stängd. Om tillslag inte önskas, ska länkarmen (den sm fästs på karmen)

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

KEMA02 Oorganisk kemi grundkurs F12

KEMA02 Oorganisk kemi grundkurs F12 KEMA02 Organisk kemi grundkurs F12 Kinetik Kinetik Atkins & Jnes kap 14.1 14.5 Översikt Reaktinshastigheter Kncentratin ch reaktinshastighet Mmentan hastighetsekvatin Hastighetsekvatiner ch reaktinsrdning

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

Laboration 1: Kalorimetrisk bestämning av neutralisationsentalpi

Laboration 1: Kalorimetrisk bestämning av neutralisationsentalpi LINKÖPINGS UNIVERSITET 2013-10-03 Avd för kemi, IFM Fysikalisk kemi Labratin 1: Kalrimetrisk bestämning av neutralisatinsentalpi Labratin 1: Kalrimetrisk bestämning av neutralisatinsentalpi Uppgift: 1.

Läs mer

Hårdmetallfilar för tuff användning speciellt i gjuterier, varv och vid tillverkning av stålkonstruktioner

Hårdmetallfilar för tuff användning speciellt i gjuterier, varv och vid tillverkning av stålkonstruktioner speciellt i gjuteie, vav och vi tillvekning av stålkonstuktione Nya specialtanninga och S Nya innovativa specialtanninga, extemt okänsliga fö slag. Dessa mycket obusta, kaftfulla tanningsvaiante minimea

Läs mer

Finansmatematik II Kapitel 4 Tillväxt och risk

Finansmatematik II Kapitel 4 Tillväxt och risk 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik Thmas Höglund Versin 04 10 21 Finansmatematik II Kapitel 4 Tillväxt ch risk 2 Finansmatematik II Man går inte in på aktiemarknaden

Läs mer

Vad är kompetens och vad är rätt kompetens?

Vad är kompetens och vad är rätt kompetens? Vad är kmpetens ch vad är rätt kmpetens? Det är dags att börja med att definiera detta. Om du ställer frågan vad behöver man kunna för att utföra sina arbetsuppgifter så blir det ftast lite lättare. Det

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar x ap 0 Dimensioneing av balka med 0 Dimensioneing av balka med vaieande tväsnitt oc kökta balka Tabell 0. Allmänna balkfome. Pulpetbalk l Sadelbalk l ap l Kökt balk 'x 'ap 0 x x 0 l/-c/ l/ c/ γ = c/ =

Läs mer

Plan mot diskriminering och kränkande behandling ombord på T/S Gunilla

Plan mot diskriminering och kränkande behandling ombord på T/S Gunilla Öckerö, 2015 Plan mt diskriminering ch kränkande behandling mbrd på T/S Gunilla Målet är att planen ska följa sklverkets allmänna råd: Tydligt uttrycka att verksamhetens ledning tar avstånd från alla tendenser

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Enköpings Biodlae c/o Mattias Blixt Kykvägen 3 749 52 GRILLBY Jounalnumme 2012-1185 E-postadess mattias.blixt@enviotaine.com B.Uppgifte om kontaktpesonen Namn

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2015-08-29, kl 14.00-18.00 Tentamenskod: TEN1 Tentasal: TER1, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 15.00) Kursadministratör:

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

Kap. 12. Molekylspektroskopi: Rot&Vib

Kap. 12. Molekylspektroskopi: Rot&Vib Kap.. Molekylspektoskopi: Rot&Vib A.3 Spektoskopiska teknike Molekylspektoskopi: Växelvekan elektoagnetisk stålning olekyle olekyl i gundtillståndet absoption M hν M* eission excitead olekyl (elektoniskt-,

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Novenco Radialfläktar CAL

Novenco Radialfläktar CAL Novenco Radialfläkta CAL Poduktfakta Podukt Kaftigt byggd adialfläkt av medeltyckstyp, avsedd fö dift i aggessiv miljö. Användningsomåden Fö pocessluft i komposteingsanläggninga och anda installatione

Läs mer

Digitala verktyg i musik

Digitala verktyg i musik DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Digitala verktyg i musik I Lgr 11, del 2.2 m kunskaper står det att sklan ska ansvara för att varje elev efter genmgången grundskla kan använda mdern teknik

Läs mer

BIPACKSEDEL: INFORMATION TILL ANVÄNDAREN. Intrinsa 300 mikrogram/24 timmar depotplåster Testosteron

BIPACKSEDEL: INFORMATION TILL ANVÄNDAREN. Intrinsa 300 mikrogram/24 timmar depotplåster Testosteron BIPACKSEDEL: INFORMATION TILL ANVÄNDAREN Intrinsa 300 mikrgram/24 timmar deptplåster Teststern Läs nga igenm denna bipacksedel innan du börjar använda detta läkemedel. - Spara denna infrmatin, du kan behöva

Läs mer

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor 1 Etnicitet i ekyteingssammanhang -En jämföelse mellan pivat och offentlig sekto Chistina Ekdahl Madelene Gustafsson Elin Spaman Maia Svedbeg Pojektabete 5 poäng Våteminen 2002 Handledae: Staffan Nilsson

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Likabehandlingsplan / Plan mot kränkande behandling för Klippans Förskola

Likabehandlingsplan / Plan mot kränkande behandling för Klippans Förskola Likabehandlingsplan / Plan mt kränkande behandling för Klippans Förskla 150630 Barn- ch utbildningsnämndens visin Varje barn ch elev ska med lust ch glädje uppleva meningsfullhet ch framgång i det dagliga

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Skogsnöten 2009. Namn. Skola. 80 p. Kommun. 19 p

Skogsnöten 2009. Namn. Skola. 80 p. Kommun. 19 p Skgsnöten 009 Namn Skla Kmmun Päng sammanlagt 80 p. Aspen kan me än väl kallas fö en nyckelat i mskgana, då ett stt antal ate ä beende av asp unde lika stadie i dess utveckling. Aspen ä tvåbyggae, dvs.

Läs mer

Nationell satsning för ökad patientsäkerhet

Nationell satsning för ökad patientsäkerhet Nationell satsning fö ökad patientsäkehet delappot med esultat och efaenhete NATIONELL SATSNING FÖR ökad PATIENTSÄKERHET 1 Sveiges Kommune och Landsting 2010 118 82 Stockholm Tfn 08-452 70 00 E-post: info

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

Att tänka på inför ekonomiredovisning

Att tänka på inför ekonomiredovisning Att tänka på inför eknmiredvisning Leader Terra et Mare Fregatten 2 444 30 Stenungsund http://www.terraetmare.se Eknmiredvisning görs i samband med varje ansökan m utbetalning (rekvirering av pengar) i

Läs mer

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv NU-SJUKVÅRDEN EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Ganskning u ett ledningspespektiv Ganskning genomföd på uppdag av Västa Götalandsegionens evisoe Vilhelm

Läs mer

KURSER & UTBILDNINGAR Hösten 2009 & Våren 2010

KURSER & UTBILDNINGAR Hösten 2009 & Våren 2010 KURSER & UTBILDNINGAR Hösten 2009 & Våren 2010 Bdy Mind Sul MT AB 2009 www.bdymindsul-mt.cm 1 VÄLKOMMEN! Mitt namn är Mnica Thengberg,ch jag hälsar Dig välkmmen till Bdy Mind Sul s kurser ch utbildningar

Läs mer

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA 1 KOMIHÅG 2: --------------------------------- Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning del 1 i Fysik A för Basåret (Denna tentamen avser första halvan av Fysik A, kap 1, 3-6 ch 11,12 i Heureka! Fysik kurs A) Måndagen den 7 december 2009 kl.

Läs mer

Strategier vid generationsskifte - Ekonomiska implikationer för olika intressenter

Strategier vid generationsskifte - Ekonomiska implikationer för olika intressenter Stategie vid geneationsskifte - Ekonomiska implikatione fö olika intessente Osca Stampe ndeas an SLU, Depatment of Economics Tesis No 518 Degee Tesis in usiness dministation Uppsala, 8 D-level, 3 ECTS

Läs mer

Riktlinjer för externfinansierade forskningsprojekt vid Högskolan i Skövde

Riktlinjer för externfinansierade forskningsprojekt vid Högskolan i Skövde Rektr BESLUT 2015-03-17 Dnr HS Riktlinjer för externfinansierade frskningsprjekt vid Högsklan i Skövde Eknmiavdelningen vid Högsklan i Skövde har riktlinjer för externfinansierade frskningsprjekt. Dkumentet

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Årsredovisning Armada Kanalfastigheter AB

Årsredovisning Armada Kanalfastigheter AB 3 '' 3 Årsredvisning Armada Kanalfastigheter AB Org.nr Räkenskapsår 214-1-1-214-12-31 Årsredvisning för räkenskapsåret 214-1-1-214-12-31 Styrelsen ch verkställande direktören för Armada Kanaifastigheter

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

XV. Elektriska fält. XV.1. Kraften mellan laddningar: Coulombs lag F E ( ) 2 ( ) N F E.

XV. Elektriska fält. XV.1. Kraften mellan laddningar: Coulombs lag F E ( ) 2 ( ) N F E. XV. lektiska fält Fö tillfället vet vi av baa fya olika fundamentala kafte i univesum. Dessa ä: Gavitationskaften Bekant fån mekanikenkusen Den elektomagnetiska kaften Detta kapitels ämne, osaken till

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer