1 Två stationära lösningar i cylindergeometri

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "1 Två stationära lösningar i cylindergeometri"

Transkript

1 Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes vinkelhastighet ä Ω och dess adie ä R. Bestäm a) hastighetsfältet i vattnet, b) fomen av den fia vattenytan, c) och spänningen på cylinden. Figue 1: En oteande cylinde som ä nedsänkt i vatten genea en vivel omking sig i vattnet. I en vivel sjunke tycket mot centum. Däfö komme den omgivande vattenytan att sjunka king cylinden. Lösning a) Navie-Stokes ekvatione i cylindekoodinate kan skivas (se Appendix A) t + (u )u u θ θ t + (u )u θ + u u θ z t + (u )u z = 1 ( ρ + ν u u ) θ, (1) θ = 1 ( ρ θ + ν u θ u θ + ), () θ = 1 ρ z + ν u z g, (3) dä u = u + u θ θ + u z z. (4) 1

2 Av symmetiskäl så ha vi ingen vaiation i θ-led. Till att böja med kan vi anta att hastighetsfältet ä en funktion av och (möjligen) z. Randvillkoen fö hastighetskomponentena ä u θ = ΩR då = R och u θ 0 då, (5) u = u z = 0 då = R och u, u z 0 då. (6) Givet dessa andvillko ä det natuligt att söka en lösning av fomen u = u θ ()e θ. Vi anta alltså att u = u z = 0 och att u θ endast ä en funktion av och inte av z. Med denna ansats bli de flesta temena noll i ekvationena (1-3) och vi få följande system u θ = 1 ρ, (7) ( ( ) ) 1 0 = ν θ u θ, (8) 0 = 1 ρ z g, (9) Ekvation (8) kan integeas på två olika sätt. Enligt det fösta sättet skive vi om den som ( ) 1 (u θ) = 0. (10) Diekt integation ge nu u θ = A + B, (11) dä A och B ä två integationskonstante. Enligt det anda sättet så gö vi ansatsen u θ = C m m och finne då att m = ±1, med två linjät obeoende lösninga. Vi få då samma esultat (11). Villkoet att u θ 0 då ge att A = 0 och villkoet u θ (R) = ΩR ge att B = ΩR och vi få lösningen u θ = ΩR. (1) b) Fö att bestämma fomen på den fia vattenytan stoppa vi in (1) i (7) och integea = ρω R 4 p = ρ Ω R 4 + f(z). (13) 3 Fö att bestämma funktionen f(z) integea vi (9). Fån (13) och (14) se vi att tycket kan skivas p = ρgz + g(). (14) p = ρgz ρ Ω R 4 + C, (15) dä C ä en konstant. Fö z = 0 och ha vi att p = p atm, vilket ge C = p atm. Vid den fia vattenytan ha vi att p = p atm och således få vi z- koodinaten av den fia ytan som funktion av den adiella koodinaten, z = Ω R 4 g. (16)

3 c) Fö att beäkna spänningen på cylinden använde vi uttycket (se Appendix A) ( τ θ = µe θ = µ ( ) uθ + 1 ), (17) θ vilket ge τ θ =R = µ ( R ) Ω =R = µω. (18) Detta ä alltså spänningen i e θ -led på ytan vas enhetsnomalvekto peka i e -led. Minustecknet betyde att spänningen ä motiktad e θ om Ω ä positiv (se figu ). Figue : Spänningen på cylinden ä motiktad otationen, eftesom vattnet bomsa cylinden. Exempel 6. Stömning inne i en oteande cylinde En lång oteande cylinde ä fylld med vatten på insidan. Rotationsaxeln ä vetikal, cylindes vinkelhastighet ä Ω och dess adie ä R. Bestäm a) hastighetsfältet i vattnet inne i cylinden, b) fomen av den fia vattenytan, c) och spänningen på cylinden. Lösning a) Pecis som i föa exemplet få vi att u θ = A + B, (19) dä A och B ä två integationskonstante. Hastighetsfältet måste vaa begänsat då = 0. Däfö ha vi att B = 0. Randvillkoet u θ (R) = ΩR ge A = Ω och u θ = Ω. (0) Vattnet på insidan av cylinden otea alltså som en stel kopp. 3

4 b) Fö tycket få vi = ρω p = ρω + f(z). (1) Pecis som i föa exemplet integea vi (9) och få då vilket ge p = ρgz + g(). () p = ρω ρgz + C. (3) Om vi välje noll-läget fö z-axeln vid den fia ytan så få vi att C = p atm, eftesom p = p atm då = z = 0. Den fia ytan bli alltså paabolisk, med fomen z = Ω g (4) Figue 3: Den oteande cylinden genea en stelkoppsotation av vattnet på insidan. Tycket sjunke mot centum och däfö sjunke ytan mot centum. c) Eftesom öelsen ä en stelkoppsotation ä töjningstenson noll och däfö ä skjuvspänningana noll, vilket vi lätt kan bekäfta med uttycket (17). Det ä alltså ingen spänning på cylinden. 4

5 En instationä lösning Exempel 6.3 Stokes fösta poblem En stillastående inkompessibel fluid med densiteten ρ och viskositeten ν fylle ett halvoändligt um ovanfö x-axeln. Fluiden acceleeas plötsligt av att anden som ä paallell med x-axeln fån det ena ögonblicket till det anda böja öa sig med en hastighet U i positiv x-led. Bestäm a) hastighetsfältets utveckling i tiden i fluiden, b) spänningen på väggen som funktion av tiden. Figue 4: En platta böja fån det ena ögonblicket till det anda att öa sig med en hastighet U och svepe med sig en fluid. Lösning a) Uppenbaligen måste allting se likadant ut vid vaje x-position. Hastighetsfältet och tyckfältet kan däfö inte ha något x-beoende. Fån kontinuitetsekvationen få vi v y = x = 0 v = C. (5) Randvillkoet ge att C = 0, vafö v = 0. Ekvationen fö u kan skivas t + u x + v y = 1 ρ x + ν u. (6) Eftesom v = 0 och hastighetsfält och tyckfält ä obeoende av x få vi nu med andvillkoen t = u ν y, (7) u = U då y = 0, u 0 då y. (8) 5

6 Vi ska nu lösa ekvationen (7) med andvillkoen (8) genom att göa en så kallad likfomighetsansats: u(y, t, ν) = Uf(η), (9) dä η ä en så kallad likfomighetsvaiabel, vilket innebä att den ska vaa dimensionslös. De elevanta paametana ä y, t och ν. Den kinematiska viskositeten ha dimensionen L /T. Den dimensionslösa vaiabel som vi kan skapa fån dessa paameta ä y/ νt. Vi välje η = y νt. (30) Att inkludea tvåan i nämnaen ska visa sig paktiskt, men det ä inte nödvändigt fö att komma fam till lösningen. Vi få nu Vi sätte nu in (31) och (33) i (7) och få Randvillkoen bli t = U df η df η = U dη t dη t, (31) y = U df η dη y = U df 1 dη νt, (3) u y = U d f 1 dη 4νt. (33) η df dη = d f dη. (34) f = 1 då η = 0, f 0 då η. (35) Ekvation (34) kan integeas en gång genom följande manipulation df f = η dη ln f = η + K f = Ce η. (36) Ytteligae en integation ge f = C η 0 e η dη + A, (37) dä A ä en ny integationskonstant. Fån villkoet f = 1 då η = 0 få vi att A = 1 och fån villkoet i oändligheten få vi Lösningen kan följaktligen skivas 1 C = 0 e η dη =. (38) π f = 1 π η 0 e η dη = 1 ef(η), (39) 6

7 dä vi inföt den så kallade eo-funktionen, ef(η) = π η 0 e η dη. (40) I teme av de uspungliga vaiablena kan lösningen skivas u = U ( 1 ef ( )) y νt (41) Detta ä ett exempel på en likfomighetslösning. Ha vi lösningen fö en tidpunkt fö en speciell fluid med en given viskositet så känne vi också lösningen fö alla anda tide och dessutom känne vi lösningen fö en annan fluid med en annan viskositet. Om vi exempelvis skulle utföa ett expeiment med två olika fluide och plotta hastigheten som funktion av y fö olika tide fö de två olika fluidena, så skulle alla dessa kuvo bli olika. Ju länge tiden ha gått desto stöe ä hastigheten vid en given y-koodinat. Dessutom komme hastigheten fö den fluid som ha stöe viskositet att vaa stöe vid en given tid och en given y-koodinat. Om vi däemot skala om alla kuvo genom att dividea y med νt så komme de att sammanfalla. Detta gälle kuvona fö en och samma fluid vid olika tidpunkte, men också kuvona fö de två olika fluidena. b) Väggskuvspänningen bli τ = µ [ ] df y η ν y=0 = µu = ρu dη y πt, (4) y=0 dä minustecknet betyde att spänningen på väggen ä iktad i negativ x-led, vilket innebä att fluiden bomsa väggen. Då t 0 få vi en oändligt sto spänning. Detta ofysikaliska esultat ä en konsekvens av det ofysikaliska antagandet att väggen böja öa sig i ett enda ögonblick, d v s med oändligt sto acceleation. 7

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1. 1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Nivåmätning Fast material Flytande material

Nivåmätning Fast material Flytande material Nivåmätning Fast mateial Flytande mateial Nivåmätning fö pocessindustin Nivåkontoll fö: Övefyllnadsskydd Batchkontoll Poduktmätning Lagekontoll Säkehetslam Skiljeyto Industie: Koss o Asfalt Olja o Gas

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen.

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen. Ditt nya dömboende finns hä. I Nykvan. 72 toppmodena hyesätte 1-4 um och kök i kv. Kaaffen. Fötätning i centalt läge. Kaaffen bestå av två punkthus om sex våninga samt två tevånings vinkelhus, samtliga

Läs mer

Ta ett nytt grepp om verksamheten

Ta ett nytt grepp om verksamheten s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst

Läs mer

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar) B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

Heureka Fysik 2, Utgåva 1:1

Heureka Fysik 2, Utgåva 1:1 Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med

Läs mer

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109 PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat. Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom

Läs mer

LEONARDO DA VINCI ( )

LEONARDO DA VINCI ( ) LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.

Läs mer

Inlämningsuppgifter till 21/2 2003

Inlämningsuppgifter till 21/2 2003 Inlämningsuppgifte till / 003. Föenkla µ / µ / Lena A.,9,0,7,83 Niklas E.,5,,73,8 My E. 9,3,,7,9 Sanda F. 8,33a,3,7,9. Skiv om följande uttyck utan ottecken i nämnaen: x + x 3. Skiv om utan ottecken i

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som. Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Föreläsning 7 Molekyler

Föreläsning 7 Molekyler Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet.

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet. Föreläsning 3. 1 Töjningstensorn I denna föreläsning kommer vi konsekvent att använda oss utav Cartesisk tensornotation i vilken vi benämner våra koordinater med (x 1, x 2, x 3 ) och motsvarande hastighetskomponenter

Läs mer

Instuderingsfrågor Energilagringsteknik 7,5 hp, vt 2012

Instuderingsfrågor Energilagringsteknik 7,5 hp, vt 2012 Instudeingsfågo Enegilagingsteknik 7,5 hp, vt 1 Vämeöveföing och skiktning 1. Ge 6 skäl till vafö vatten ä så populät som lagingsmedium vid sensibel vämelaging.. Föklaa två viktiga skillnade i dimensioneingen

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Uppgifter 1994 års upplaga

Uppgifter 1994 års upplaga Uppgifte 994 ås upplaga 994: 8.3 (Föutsätte vetoäning.) En vetial cylindis behållae ä delvis fylld med vätsa och otea med jämn vinelhastighet ω ing sin vetiala axel. Vätsenivån sjune då i mitten och höjs

Läs mer

Finansiell ekonomi Föreläsning 3

Finansiell ekonomi Föreläsning 3 Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Omtentamen IF1330 Ellära tisdagen den 18 augusti

Omtentamen IF1330 Ellära tisdagen den 18 augusti Omtentamen IF33 Elläa tisdagen den 8 augusti 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Dopplereffekt och lite historia

Dopplereffekt och lite historia Dopplereffekt och lite historia Outline 1 Lite om relativitetsteorins historia 2 Dopplereffekt och satelliter 3 Dopplereffekt och tidsdilatation L. H. Kristinsdóttir (LU/LTH) Dopplereffekt och lite historia

Läs mer

Vi kan printlösningar

Vi kan printlösningar Pintlösninga Vi kan pintlösninga l en l i t n e Väg e a t a sm iljö m a v i sk UTMANINGARNA Fågona hopa sig fö dig som ansvaa fö pint Va femte skivae som säljs i Sveige komme fån Dustin. Vi ä väl medvetna

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

Novenco Radialfläktar CAL

Novenco Radialfläktar CAL Novenco Radialfläkta CAL Poduktfakta Podukt Kaftigt byggd adialfläkt av medeltyckstyp, avsedd fö dift i aggessiv miljö. Användningsomåden Fö pocessluft i komposteingsanläggninga och anda installatione

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

MMVA01 Termodynamik med strömningslära

MMVA01 Termodynamik med strömningslära INLEDNING MMVA01 Termodynamik med strömningslära 1.1 Deniera eller förklara kortfattat (a) uid Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan gurer) 18 augusti 010 = medium som kontinuerligt

Läs mer

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor 1 Etnicitet i ekyteingssammanhang -En jämföelse mellan pivat och offentlig sekto Chistina Ekdahl Madelene Gustafsson Elin Spaman Maia Svedbeg Pojektabete 5 poäng Våteminen 2002 Handledae: Staffan Nilsson

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01 Analys av mätdata fö beäkning av noggannhet i sklassificeing och hastighetsegisteing Rappot 01 Mätning i Klett nov 2011 och Amsbeg januai 2012 Kund Tafikveket Mottagae Pe Melén, Dennis Andesson Vesion

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Kapitel 9 Hydrostatik. Fysik 1 - MB 2008

Kapitel 9 Hydrostatik. Fysik 1 - MB 2008 Tryck Kraft per yta kallas tryck. När en kraft F verkar vinkelrätt och jämnt fördelad mot en yta A erhålls trycket p F p där A p = tryck F = kraft A = area eller yta Tryck forts. p F A Enheten för tryck

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika En intoduktion (v1.0) en intoduktion En intoduktion (v1.0) Innehåll 1.0 Olika fome av solenegi... 3 1.1 Passiv solinvekan...3 1.2 Solfångae...3 1.3 Solcelle...3 1.4 Koncentation av solljuset...4 2.0 Hu

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

Problemsamling. Peter Wintoft Institutet för rymdfysik Scheelevägen Lund

Problemsamling. Peter Wintoft Institutet för rymdfysik Scheelevägen Lund Solär-terrest fysik, AST 213 Problemsamling Peter Wintoft (peter@irfl.lu.se) Institutet för rymdfysik Scheelevägen 17 223 70 Lund 2001-09-19 AST 213 2001-09-19 1 1. Allmänna gaslagen p = nkt (1) relaterar

Läs mer

Nationell satsning för ökad patientsäkerhet

Nationell satsning för ökad patientsäkerhet Nationell satsning fö ökad patientsäkehet delappot med esultat och efaenhete NATIONELL SATSNING FÖR ökad PATIENTSÄKERHET 1 Sveiges Kommune och Landsting 2010 118 82 Stockholm Tfn 08-452 70 00 E-post: info

Läs mer

Det totala motståndet kan beräknas med hjälp av ekvation (6.13), som lyder:

Det totala motståndet kan beräknas med hjälp av ekvation (6.13), som lyder: Uppgift 6. FYGPANSDATA W 40N V 89,m / s S 8,6m AR 8,5 e 0,9 ρ,5kg / m (ISA havsnivå) Vid ovannämnda hastighet flyger flygplanet i ( D). Uppgift: Beräkna flygplanets totala motstånd! Det totala motståndet

Läs mer

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc

Läs mer

Mekanik Laboration 3

Mekanik Laboration 3 Götebogs Uniesitet Natuetenskapligt baså, NBAF 9/9 8 Institutionen fö fsik Inga Albinsson Natuetenskapligt baså, NBAF Laboationen genomfös i guppe om te och omfatta 4 olika fösök som totalt genomfös unde

Läs mer

Lektion 3: Verkningsgrad

Lektion 3: Verkningsgrad Lektion 3: Verkningsgrad Exempel; Hydraulsystem för effektöverföring Verkningsgrad: η = P U P T = ω UM U ω T M T η medel (T) = T 0 P UT(t)dt T 0 P IN(t)dt Lektion 3: Innehåll Dagens innehåll: Arbete/effekt

Läs mer