1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

Storlek: px
Starta visningen från sidan:

Download "1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel."

Transkript

1 Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på en ät linje L elle ä paallella med L Låt e aa en icke-nollekto på linjen L och en punkt på linjen Då definiea punkten och ekton e ett koodinatael e A P -aeln En ekto som ligge på L elle ä paallell med L ä också paallell med e och däfö finns det ett tal så att e Vekton e ä en basekto fö alla ektoe som ligge på L elle ä paallella med L BASER CH KRDINATER FÖR VEKTRER SM LIGGER I ETT PLAN Vi betakta ektoe som ligge i ett giet plan som i beteckna α SATS Låt e och e aa tå skilda fån nollekton och dessutom icke-paallella ektoe som ligge i planet Vaje ekto i planet kan skias som en linjä kombination a e och e e e * dä och ä entidigt bestämda tal Beis: Vi paallellföfltta e e och så att de stata i samma punkt Vi beteckna e e B och P se figuen nedan Genom punkten P da i linjena paallella med e och e samt beteckna med M N deas skäningspunkte med linjena som gå genom punktena och B Vi se att M N Eftesom M e och N e så finns det ett tal så att M e och ett tal så att N e Däfö M N e e Dämed ha i isat att det finns tal och sådana att

2 Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet e e * Vi ha ka att beisa entdighet Låt e e en godtcklig epesentation a som en linjä kombination a e och e Då ha i e e e e e e Eftesom e och e ä icke- paallella och skilda fån nollekton ä detta möjligt endast om och Vi ha dämed beisat entdighet i * Anmäkning: I samband med base och basektoe anände i följande teminologi: Vi säge att oanstående e och e utgö en bas i planet α och att talen och ä :s koodinate i basen e e Vektoena e och e kallas :s komposante i basen e e Vi säge att planet α spänns upp a ektoena e och e m P ä en punkt i planet α då kan motsaande ektop skias som en linjä kombination a e och e P e e Vi säge också att alla ektoe som ligge i planet bilda ett tå-dimensionell ektoum ummet ha basektoe Beteckning: Vekton P e e följande sätt: P Koodinatsstem i ett plan nä basen e e ä känd anges oftast med endast koodinate på En punkt och tå basektoe icke-paallella och ej nollektoe som ligge i planet och som i beteckna e och e definiea ett paallellt koodinat sstem i planet med tå ala: -aeln gå genom och ha iktningsekto e och -aeln gå genom och ha iktningsekto e

3 Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet -aeln P B e e A -aeln Låt P aa en gien punkt i planet Vekto P som ha en entdlig famställning P e e kallas punktens otekto Tal kallas punktens koodinate Alltså punkten P och punktens otekton P ha samma koodinate Beteckning: Att punkten P ha koodinate skis i kusböcke på följande tå sätt: P elle P Koodinate fö en ekto mellan tå gina punkte m A och B ä tå punkte i planet A B då gälle AB A B B Alltså AB e elle kotae AB e e e e e e Eempel: A B AB [ alltså ändpunktens koodinate statpunktens kodinate] e BASER CH KRDINATER FÖR GEMETRISKA VEKTRER I RUMMET

4 Amin Haliloic: EXTRA ÖVNINGAR 4 a 9 Base och koodinate i D-ummet Fö att bilda en bas i D-ummet te-dimensionella ummet behöe i te ektoe e e e som ä skilda fån 0 och som inte ä paallella med ett gemensamt plan man säge ofta de inte ligge i samma plan Då kan aje skias på eakt ett sätt som en linjä kombination a e e och nedanstående figu e se Vi se detta om i paallell föfltta e e e och så att de ha en gemensam stat punkt Den ätta linje genom P :s ändpunkt som ä paallell med e måste skäa planet e e -planet i en punkt Q eftesom e e e ä ej paallella med något gemensamt plan Linjen genom Q paallell med e skä aeln i punkten R Då gälle R RQ QP Men eftesom R e RQ e QP e R e RQ e QP e Däfö e e e Entdighet beisas som i D fallet Koodinatsstem i D_ummet finns det tal så att En punkt och te basektoe icke-paallella med något gemensamt plan och skilda fån 0 e e e definiea ett paallellt koodinat sstem i planet med te ala: -aeln gå genom och ha iktningsekto e -aeln gå genom och ha iktningsekto e och -aeln gå genom och ha iktningsekto e

5 Amin Haliloic: EXTRA ÖVNINGAR 5 a 9 Base och koodinate i D-ummet Koodinate fö en punkt P definieas som koodinate med ekton otekto Alltså P e e e P Koodinate fö en ekto mellan tå gina punkte P punktens m A och B ä tå punkte i ummet då gälle AB A B B e e e e e e e e e Alltså AB e e e elle kotae AB Eempel: A B4 AB 0 ÖVNINGAR: Uppgift Uttck u och i nedanstående figu som linjäa kombinatione a basektoe e och e och bestäm deas koodinate Sa: u e e koodinate 5e e koodinate 5 5e e koodinate 5 Uppgift Uttck i nedanstående figu som en linjä kombination a basektoe e och e och bestäm ektons koodinate

6 Amin Haliloic: EXTRA ÖVNINGAR 6 a 9 Base och koodinate i D-ummet e e Vi paallell föfltta ekton så att statpunkt hamna i punkten : e e Nu ha i 5e e koodinate Uppgift Bestäm koodinate fö w 0 u i basen e och e om :s koodinate ä och samt u :s koodinate ä 5 och -5 i samma bas e e u 5e 5e w 0 u 0e e 5e 5e 0e 0e e 5e 7e 5e Dämed ä w : s koodinate i basen e och e 7 5 Uppgift 4 Bestäm p och q så att u p e e och e q 5 e bli lika ektoe Vi anände att koodinate ä entdigt bestämda fö en gien bas u { p och q 5} p q 7 Sa: p q 7 Uppgift 5 Agö om u och ä paallella dä a u e e e e b u e e 8e 4e a u och ä paallella om det finns ett tal k så att ku

7 Amin Haliloic: EXTRA ÖVNINGAR 7 a 9 Base och koodinate i D-ummet ku e e ke e { k och k} dä båda ekatione måste satisfieas Men fösta ekationen ge k som ä motsägelse med k i anda ekationen och dämed finns inget k som satisfiea ku Detta medfö att u och ä inte paallella b ku 8e 4e ke e {8 k och 4 k} k 4 Alltså 4u ds ä paallella ektoe Sa a nej b ja Uppgift 6 Låt e e e u e e e aa tå ektoe i D ummet med basen e e e Bestäm w 0 u w 0e e e e e e e 4e 7e Uppgift 7 Låt u aa tå ektoe i D ummet i någon bas t e e e e Bestäm a u b u c 5 u d 0 e 5 u 0 Sa: a u 4 b u 0 e 5u 0 5u c 5 u 505 d Uppgift 8 Bestäm p och q om möjligt så att u och definieade nedan med koodinate i en gien bas bli lika ektoe om a u p och q p b u p och q p a Sstemet med te ekatione p q p ha eakt enlösning p och q Då bli u b Sstemet med te ekatione p q p sakna lösning eftesom fösta ek p och tedje ek p ä en motsägelse Sa a p och q b Det finns inte sådana pq att u och bli lika Uppgift 9 Bestäm p om möjligt så att u och gien bas bli paallella definieade nedan med koodinate i en

8 Amin Haliloic: EXTRA ÖVNINGAR 8 a 9 Base och koodinate i D-ummet a u p och 844 b u p och 84 a u och paallella det finns k så att och p k844 Häa sstem : p 8k 4k k/4 och däfö p 6 4k Då bli u 6 uppenbat paallell popotionella koodinate med 844 b Den hä gånge fån p k84 få i sstemet p 8k 4k k som sakna lösning Sa: a u och ä paallella om p 6 b Det finns inte någon p så att u och bli paallella ektoe Uppgift 0 Låt A B 48 aa tå punkte i ummet dä koodinate ä gina i ett koodinatsstem e e e Bestäm koodinate fö punkten P som ligge på stäckan AB och dela AB i föhållandet : Lägg mäke till att en punkt och tillhöande otekto ha samma koodinate Vi ha P AB B B Däfö P P ha samma koodinate som P 7 9 Alltså P Uppgift 0 Låt A och B aa tå punkte i ummet och S mittpunkten på stäckan AB Koodinate ä gina i ett koodinatsstem e e e Visa att mittpunkten ges a S

9 9 a 9 Amin Haliloic: EXTRA ÖVNINGAR Base och koodinate i D-ummet Vi ha B B AB S och dämed S ad skulle beisas Uppgift 0 Låt A B C och aa te punkte i ummet och T tngdpunkten fö tiangeln ABC Koodinate ä gina i ett koodinatsstem e e e Visa att tngdpunkten ges a T B A T A C A AA AT T ] [ C B C B Alltså T ad skulle beisas

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

Mekanik Laboration 3

Mekanik Laboration 3 Götebogs Uniesitet Natuetenskapligt baså, NBAF 9/9 8 Institutionen fö fsik Inga Albinsson Natuetenskapligt baså, NBAF Laboationen genomfös i guppe om te och omfatta 4 olika fösök som totalt genomfös unde

Läs mer

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR Amn Hlloc: EXTRA ÖVNINGAR Vetopodt VEKTRPRDUKT CH TILLÄMPNINGAR Kompln etoe. Defnton: V säge tt,,..., n ä ompln etoe om etoen lgge ett pln nä de stts fån smm pnt. Med nd od, ompln etoe n mn pllellföfltt

Läs mer

Finansiell ekonomi Föreläsning 3

Finansiell ekonomi Föreläsning 3 Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Tentamen i EJ1200 Eleffektsystem, 6 hp

Tentamen i EJ1200 Eleffektsystem, 6 hp Elekto- och yteteknik Elektika akine och effektelektonik Stefan Ötlund 7745 Tentaen i EJ Eleffektyte, 6 hp Den juni, 4.-9. Räknedoa, foelaling och ateatik handbok (eta) få använda. Tentaen kan ge axialt

Läs mer

mm F G (1.1) F mg (1.2) P (1.3)

mm F G (1.1) F mg (1.2) P (1.3) Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften

Läs mer

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

Projekt sent anmälda barn

Projekt sent anmälda barn 2013-03-04 Pjekt sent anmälda ban Bakgund I Åsappt 2012 fö Kvalitetsegiste CPUP anges syftet vaa: Gunden fö CPUP ä att alla ban med CP identifieas ch ebjuds deltagande så snat CP-liknande symtm ses, dvs.

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Reflektionsprincipen

Reflektionsprincipen 156 eflektionsprincipen Dag Jonsson Uppsala Universitet 1. Inledning. Något om permutationer. Eempel 1. Vi skriver bokstäverna A, B, C i rad. å hur många olika sätt kan de tre bokstäverna ordnas inbördes

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten Byggmax miljöappot Inledning Unde 2009 påböjade Byggmax sitt miljöabete genom att skapa en miljöpolicy med miljömål. Som en följd av detta policyabete ha en miljöappot uppättats och ett kontinueligt föbättingsabete

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

Ta ett nytt grepp om verksamheten

Ta ett nytt grepp om verksamheten s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

Inlämningsuppgifter till 21/2 2003

Inlämningsuppgifter till 21/2 2003 Inlämningsuppgifte till / 003. Föenkla µ / µ / Lena A.,9,0,7,83 Niklas E.,5,,73,8 My E. 9,3,,7,9 Sanda F. 8,33a,3,7,9. Skiv om följande uttyck utan ottecken i nämnaen: x + x 3. Skiv om utan ottecken i

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

PRIMA MATEMATIK EXTRABOK 2 FACIT

PRIMA MATEMATIK EXTRABOK 2 FACIT PRIMA MATEMATIK EXTRABOK FACIT Skiv talen i stoleksodning. Böja med det minsta talet. Måla jämna tal öda och udda tal blå. ; ; ; ; ; ; R R R 0 R R R B ; ; ; ; ; ; Danmak Fankike R Polen ; ; ; ; ; ; 0 B

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar 1(5) & nt s MLJösÄKRtNG INNENALLER MILJöPOLICY ch ARBETSMILJöPOLIGY K:\Malla MILJOPOLICY 2(5) # nt s Denna miljöplicy gälle Elcente. Syfte Elcente ska följa aktuell miljölagstiftning, egle, kav ch nme

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

Surveysektionens årsmöte 20 oktober 2004.

Surveysektionens årsmöte 20 oktober 2004. uvesektonens åsmöte oktobe 4. åga aspekte på anals av suvedata av Lennat odbeg, CB ----------------------------------------------------------------- Anals av suve-data kan betda allt mölgt...tll eempel:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Riksfinal Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare OBS Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Fullständiga

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

r - -- ~YGGFORSKNINGSRADET Kantor med naturlig kyla r-, Ans lags rapport All:l996 Eje Sandberg Per Wickman I :.

r - -- ~YGGFORSKNINGSRADET Kantor med naturlig kyla r-, Ans lags rapport All:l996 Eje Sandberg Per Wickman I :. !.. ol '' i::_,. ' -:'... ;Jtt /' ' : f"... _i;,. :. Ans lags appot All:l996 10475 - -- -, Kanto med natulig kyla Eje Sandbeg Pe Wickman c YGGFORSKNNGSRADET J b Anslagsappot Al 1:1996 Konto med natulig

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Enheten för Pedaggiska Mätningar PBMaE 0-05 Umeå universitet Prvtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift 0-5 Anvisningar Ttalt 0 minuter för del I ch II

Läs mer

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15.

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15. Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfågo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste åsstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i å?. Nämn minst te type

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Möbiusgruppen och icke euklidisk geometri

Möbiusgruppen och icke euklidisk geometri 94 Möbiusgruppen och icke euklidisk geometri Lars Gårding Lunds Universitet Meningen med detta förslag till enskilt arbete är att alla uppgifter U redovisas skriftligt med fulla motiveringar och att alla

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv NU-SJUKVÅRDEN EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Ganskning u ett ledningspespektiv Ganskning genomföd på uppdag av Västa Götalandsegionens evisoe Vilhelm

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Uppdaterad 2015-02-11 15:29:44 07.10 07.17 06.44 06.51 07.10 06.44 07.17 06.51 07.34 07.17 06.57 06.51 06.44 06.51 07.10 06.57 06.57 07.34 06.

Uppdaterad 2015-02-11 15:29:44 07.10 07.17 06.44 06.51 07.10 06.44 07.17 06.51 07.34 07.17 06.57 06.51 06.44 06.51 07.10 06.57 06.57 07.34 06. -- - - - - - t tu tu tu u 001 001 001 001 003 003 003 003 003 003 003 003 003 001 069 017 069 017 003 003 003 001 001 001 001 017 010 010 010 019 019 019 023 023 023 010 010 010 017 010 019 063 063 063

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

A1 Smartboard, 32 Salsansvar:HANDEL

A1 Smartboard, 32 Salsansvar:HANDEL A1 Smartboard, 32 Salsansvar:HANDEL (90) Skrivande HP EKA2 RA Ledarskap och o EK13A1 SV Matematik 3b EKA1 WE Moderna språk 3 LP (80) Moderna språk 4 13 NM 10.05 (80) SA13B1 FM 9.50 (80) Svenska 2 EK13A2

Läs mer

Rutin för källsortering vid Campus Valla, LiU

Rutin för källsortering vid Campus Valla, LiU Sid 1 (5) Rutin fö källsoteing vid Campus Valla, LiU Fö samtliga faktione utom pappe och tidninga gälle att Hussevice tanspotea avfallet fån men i kulvet till centala uppsamlingsplatsen no om Hus A. Däifån

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

Heureka Fysik 2, Utgåva 1:1

Heureka Fysik 2, Utgåva 1:1 Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med

Läs mer

Skyarna tjockna (epistel nr 21)

Skyarna tjockna (epistel nr 21) Skyarna tockna (epistel nr 21) Text musik: Carl Michael Bellman Arr: Eva Toller 2009 Tenor 1 3 8 Tenor 2 3 8... Basso 1 8 3 1.Sky - ar - na. tock - na, stär - nor- na. slock - na, stor - mar- na. Basso

Läs mer

Sebastian det är jag det! eller Hut Hut den Ovala bollen

Sebastian det är jag det! eller Hut Hut den Ovala bollen i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea

Läs mer

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Thomas Lingefjärd Göteborg 9 Thomas Lingefjärd Introduktion till Graphmatica 1 Kort om Graphmatica Graphmatica har funnits

Läs mer

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 10-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Matematisk statistik

Matematisk statistik Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

Vektoralgebra. En inledning Hasse Carlsson

Vektoralgebra. En inledning Hasse Carlsson Vektoralgebra En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 2005 Innehåll 1 Inledning 2 2 Geometriska vektorer 2 2.1 Definition av vektorer.......................

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

formler Centralt innehåll

formler Centralt innehåll Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 63, 198 Årgång 63, 198 Första häftet 318. Visa att x8 + 4x 6 + 7x 4 + 6x 2 + 3 x 6 + 3x 4 + 4x 2 3 för alla reella tal x. + 2 2 3181. Figuren nedan är gjord av en kvadrat och dess omskrivna

Läs mer

MATEMATISK INTRODUKTION. Innehåll

MATEMATISK INTRODUKTION. Innehåll MATEMATISK INTRODUKTION Innehåll - Räkneregler för bråk - Räkneregler för potenser - Procenträkning - Ekvationer o Ekvationer och tillvätförlopp - Nuvärdesberäkningar - Funktioner o Linjära funktioner

Läs mer

Föräldrabarometer 2013

Föräldrabarometer 2013 Föbundet Hem och Skola i Finland Föäldabaomete 2013 Cilla yman (ed.) Innehåll Föod... 2 1 Inledning... 3 2 Undesökningens genomföande... 4 2.1 Föäldabaomete 2013... 4 2.2 De svaandes bakgundsuppgifte...

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120

LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120 acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,

Läs mer

) 2 = 1, där a 1. x + b 2. y + c 2

) 2 = 1, där a 1. x + b 2. y + c 2 ap 7 Användningar av multipelintegraler Arean av ett plant område 0 Beräkna arean av det område som begränsas av följande kurvor: A a (x y) 2 + x 2 = a 2 A b xy =, xy = 8, y = x och y = 2x (x > ) A c y

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer