Heureka Fysik 2, Utgåva 1:1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Heureka Fysik 2, Utgåva 1:1"

Transkript

1 Heueka Fysik, Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med v 88 Rad 5 neifån v ska esättas med v 10 Uppgift ska esättas med Uppgift 5.7, 10 5 ska esättas med 10 5 text mellan d) och e) 117 Figu i maginalen ur k i ska esättas med ur Ri 117 Rad 4 neifån 0 Ri L ska esättas med 0 Ri L 17 Uppgift 6.1 b) Visa att staven få slutfaten x ska esättas med Visa att staven U få slutfaten v s l 143 Rad 1 uppifån F ma ska esättas med F ma

2 15 Uppgift 8. Anda meningen i uppgiftstexten ska esättas med: 1 Luftmotståndskaften beäknas med fomeln F CAv dä C ä en mensionslös konstant med vädet 0,45, ä luftens densitet och A föemålets tväsnittsaea. 160 Fig. 1 a. Hä saknas en vit pil iktad åt höge ovanfö det vänsta vågbeget och en likadan pil iktad åt vänste ovanfö vågbeget till höge. Alla vita pila ska vaa lika långa som i Fig. 1 c c) 3 inga ska esättas med 4 inga. 300 Fösta spalten, kalla avståndet 1 mellan massona fö, alltså ad 14 neifån 1 ska esättas med kalla halva avståndet 1 4 mellan massona fö, alltså 1, få vi Lösning, ad 5 Mm v Mm G m ska esättas med G v m b) Fig. ska ha en 4 uto lång nedåtiktad pil vid L och en 4 uto lång uppåtiktad pil vid N c) Fig. 3 ska ha en uto lång nedåtiktad pil vid L, en 6 uto lång uppåtiktad pil vid M och en uto lång nedåtiktad pil vid N I figuen ska b 40 esättas med b c) Svaet ska vaa följande figu:

3 c) 4 ska esättas med a) R hf n 1 ge R n esätts med R hf n ge R n

4 Heueka Fysik, Utgåva 1: Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med v 88 Rad 5 neifån v ska esättas med v 10 Uppgift ska esättas med Uppgift 5.7, 10 5 ska esättas med 10 5 text mellan d) och e) 117 Figu i maginalen ur k i ska esättas med ur Ri 117 Rad 4 neifån 0 Ri L ska esättas med 0 Ri L 17 Uppgift 6.1 b) Visa att staven få slutfaten U v s l 143 Rad 3 uppifån F ma ska esättas med F ma 15 Uppgift 8. Anda meningen i uppgiftstexten ska esättas med: 1 Luftmotståndskaften beäknas med fomeln F CAv dä C ä en mensionslös konstant med vädet 0,45, ä luftens densitet och A föemålets tväsnittsaea.

5 160 Fig. 1 a. Hä saknas en vit pil iktad åt höge ovanfö det vänsta vågbeget och en likadan pil iktad åt vänste ovanfö vågbeget till höge. Alla vita pila ska vaa lika långa som i Fig. 1 c c) 3 inga ska esättas med 4 inga. 300 Fösta spalten, kalla avståndet 1 mellan massona fö, alltså ad 14 neifån 1 ska esättas med kalla halva avståndet 1 4 mellan massona fö, alltså 1, få vi Lösning, ad 5 Mm v Mm G m ska esättas med G v m 30 Facit 5.13 b) Fig. ska ha en 4 uto lång nedåtiktad pil vid L och en 4 uto lång uppåtiktad pil vid N. 30 Facit 5.13 c) Fig. 3 ska ha en uto lång nedåtiktad pil vid L, en 6 uto lång uppåtiktad pil vid M och en uto lång nedåtiktad pil vid N. 38 Facit 10.8 I figuen ska b 40 esättas med b Facit c) Svaet ska vaa följande figu: 39 Facit c) 4 ska esättas med 5.

6 331 Facit 14.8 a) R hf n 1 ge R n esätts med R hf n ge R n

7 Heueka Fysik, Utgåva 1:4 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med v 88 Rad 5 neifån v ska esättas med v 10 Uppgift ska esättas med Uppgift 5.7, 10 5 ska esättas med 10 5 text mellan d) och e) 117 Figu i maginalen ur k i ska esättas med ur Ri 117 Rad 4 neifån 0 Ri L ska esättas med 0 Ri L 143 Rad 3 uppifån F ma ska esättas med F ma c) 3 inga ska esättas med 4 inga. 300 Fösta spalten, kalla avståndet 1 mellan massona fö, alltså ad 14 neifån 1 ska esättas med kalla halva avståndet 1 4 mellan massona fö, alltså 1, få vi... 4

8 311 Lösning, ad 5 Mm v Mm G m ska esättas med G v m 39 Facit c) 4 ska esättas med Facit 14.8 a) R hf n 1 ge R n esätts med R hf n ge R n

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar x ap 0 Dimensioneing av balka med 0 Dimensioneing av balka med vaieande tväsnitt oc kökta balka Tabell 0. Allmänna balkfome. Pulpetbalk l Sadelbalk l ap l Kökt balk 'x 'ap 0 x x 0 l/-c/ l/ c/ γ = c/ =

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar) B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

Föreläsning 7 Molekyler

Föreläsning 7 Molekyler Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

PRIMA MATEMATIK EXTRABOK 2 FACIT

PRIMA MATEMATIK EXTRABOK 2 FACIT PRIMA MATEMATIK EXTRABOK FACIT Skiv talen i stoleksodning. Böja med det minsta talet. Måla jämna tal öda och udda tal blå. ; ; ; ; ; ; R R R 0 R R R B ; ; ; ; ; ; Danmak Fankike R Polen ; ; ; ; ; ; 0 B

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

Inlämningsuppgifter till 21/2 2003

Inlämningsuppgifter till 21/2 2003 Inlämningsuppgifte till / 003. Föenkla µ / µ / Lena A.,9,0,7,83 Niklas E.,5,,73,8 My E. 9,3,,7,9 Sanda F. 8,33a,3,7,9. Skiv om följande uttyck utan ottecken i nämnaen: x + x 3. Skiv om utan ottecken i

Läs mer

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen.

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen. Ditt nya dömboende finns hä. I Nykvan. 72 toppmodena hyesätte 1-4 um och kök i kv. Kaaffen. Fötätning i centalt läge. Kaaffen bestå av två punkthus om sex våninga samt två tevånings vinkelhus, samtliga

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

o n k o k t k t fk t ej k t ek t k t o n k k k k k k jz

o n k o k t k t fk t ej k t ek t k t o n k k k k k k jz Ta tre mideråriga arr. Edeius yr. Herzberg Sra 1 Sra2 At 1 At2 Ter Bass1 Bass2 Sra1 a 4 ej ej t G =120 t t t t t t t a Sra2 4 4 ej ej a At1 4 s dj s s s s dj s s s a At2 4 4 s dj s s s s dj s s s 4 b Ter

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Fysik TFYA68. Föreläsning 11/14

Fysik TFYA68. Föreläsning 11/14 Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov 1. En kylmaskin som drivs med en spänning på 220 Volt och en ström på 0,50 A kyler vatten i en behållare. Kylmaskinen har en verkningsgrad på 0,70.

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

MONTERINGSANVISNING FÖR STÅLKARM

MONTERINGSANVISNING FÖR STÅLKARM 1 MONTERINGSANVISNING FÖR STÅLKARM MARS 2013 2 KARMTYPER FF FO OO OF F- O- SI SSI RI RV 3 MONTERING Kontrollera noga före montage att alla karmdelar erhållits samt ev. tröskel och monteringspåsar. På sida

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

GRAFISKA RIKTLINJER FÖR ANNONSPRODUKTION

GRAFISKA RIKTLINJER FÖR ANNONSPRODUKTION GRAFISKA RIKTLINJER FÖR ANNONSPRODUKTION EN ENHETLIG PROFIL För oss på HAND är det väldigt viktigt att all vår kommunikation ser likadan ut oberoende vem som annonserar. För att göra detta enkelt har vi

Läs mer

F07 - Grupp 1 Mnr Tidpunkt Match Resultat Plan. F07 - Grupp 2. F07 - Grupp 3. Spånga Handboll Lilla Västerortscupen :10 Sida 1

F07 - Grupp 1 Mnr Tidpunkt Match Resultat Plan. F07 - Grupp 2. F07 - Grupp 3. Spånga Handboll Lilla Västerortscupen :10 Sida 1 Spånga Handboll Lilla Västerortscupen 2016 2016-10-30 16:10 Sida 1 F07 - Grupp 1 1 Lör 09:30 Skuru IK:4 - Huddinge HK 2 4-11 Smedshagen A 2 Lör 09:30 Spånga HK - Haninge Handbolls klubb 3-7 Smedshagen

Läs mer

Karlstad (Klarälven) Hotkarta för det beräknade högsta flödet*

Karlstad (Klarälven) Hotkarta för det beräknade högsta flödet* - m -, m, -,5 m >,5 m Skala :2 (A3) 23--26 Framtagen enligt förordningen (SFS 29:956) om av 7 - m -, m, -,5 m >,5 m Skala :2 (A3) 23--26 Framtagen enligt förordningen (SFS 29:956) om 2 av 7 - m -, m, -,5

Läs mer

Nr 800 BILAGA 1 GRUNDER ENLIGT 9 I LAGEN OM PENSION FÖR ARBETSTAGARE I KORTVARIGA ARBETSFÖRHÅLLANDEN

Nr 800 BILAGA 1 GRUNDER ENLIGT 9 I LAGEN OM PENSION FÖR ARBETSTAGARE I KORTVARIGA ARBETSFÖRHÅLLANDEN 800 400 BILAGA GRUER ELIG 9 I LAGE OM PESIO FÖR ARBESAGARE I KORRIGA ARBESFÖRHÅLLAE 4002 800. Fösäkngsteknska stohete e fösäkngsteknska stohetena dessa gunde motsaa de a socal- och hälsoådsmnsteet fö pensonsfösäkngsbolagen

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

kanal kanal (Totalt 6p)

kanal kanal (Totalt 6p) . vå lika fläktar, se bilaga och, arbetar arallellt mot samma huvudledning. Den ena hämtar via en kanal atmosfärsluft (5 C) medan den andra hämtar hetluft (7 C) av atmosfärstryck via en annan likadan kanal.

Läs mer

Nr 1406 BILAGA Försäkringstekniska storheter

Nr 1406 BILAGA Försäkringstekniska storheter 3858 406 BILAGA. Fösäingstenisa stohete e fösäingstenisa stohetena i dessa gunde följe de allmänna beäningsgundena fö pensionsfösäingsbolagen som fastställdes a social- och hälsoådsministeiet 6.0.990 och

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Mening med ditt liv G/H. o n G/H

Mening med ditt liv G/H. o n G/H =132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s

Läs mer

Nivåmätning Fast material Flytande material

Nivåmätning Fast material Flytande material Nivåmätning Fast mateial Flytande mateial Nivåmätning fö pocessindustin Nivåkontoll fö: Övefyllnadsskydd Batchkontoll Poduktmätning Lagekontoll Säkehetslam Skiljeyto Industie: Koss o Asfalt Olja o Gas

Läs mer

ll Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17

ll Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17 ll Fakka ab Stockholm 2010-05-17 Enegideklaationsabetet HSB:s Bf Kubena i Stockholm Vi ä nu fädiga med enegideklaationsabetet fö HSB:s Bf Kubena i Stockholm. Enegideklaationena ä inskickade och godkända

Läs mer

Åtgärdslista med detaljerade beskrivningar - 2014-09-04 Bilaga 2

Åtgärdslista med detaljerade beskrivningar - 2014-09-04 Bilaga 2 Åtgäds Rev.2014-06-10 Beäknad bespaing 2 439,94 3 229,04 17,0 12,8 Åtgädsn Kolumn1 Total Beäknad Kolumn2 tk Beäknad pay-off Mätvädesinsamling 0,00 200,00 0,0 Delesultat filteat 00 LB 4 Allmänna åtgäde

Läs mer

Beskrivning. Gallerdurk. Kantprofil Fyllnadsstål Bärstål

Beskrivning. Gallerdurk. Kantprofil Fyllnadsstål Bärstål PcP 0113 eskrivning Gallerdurk redd Kantprofil Fyllnadsstål ärstål Maska Mc ängd (bärriktning) Maska Ma När man ska beskriva PcP gallerdurk anger man gallrets totalmått och maskstorlek så att bärriktningen

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Anvisningar för kontroll och underhåll av sållningsutrustning

Anvisningar för kontroll och underhåll av sållningsutrustning SDCs instruktioner för virkesmätning Sida 1 av 5 Anvisningar för kontroll och underhåll av sållningsutrustning 1 INLEDNING... 2 2 KOMPETENSKONTROLL... 2 3 KONTROLL OCH UNDERHÅLL AV SÅLLNINGSUTRUSTNING...

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

Dag Datum Tid Måltyp Målnummer Saken

Dag Datum Tid Måltyp Målnummer Saken må 2014-04-14 09:00-09:45 Huvudförhandling B 15178-13 narkotikabrott må 2014-04-14 09:00-11:00 Muntlig förberedelse T 15550-13 umgänge med barn må 2014-04-14 09:00-11:00 Huvudförhandling B 17681-13 anstiftan

Läs mer

Anvisningar för kontroll och underhåll av sållningsutrustning

Anvisningar för kontroll och underhåll av sållningsutrustning Nationella instruktioner för virkesmätning Sida 1 av 6 Anvisningar för kontroll och underhåll av sållningsutrustning 1 INLEDNING... 2 2 KOMPETENSKONTROLL... 2 3 KONTROLL OCH UNDERHÅLL AV SÅLLNINGSUTRUSTNING...

Läs mer

det bästa sättet för e n författare att tala är a tt skriva

det bästa sättet för e n författare att tala är a tt skriva 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 b e a h d g e a c g e f b d d c b f h d h b a h e c f d g b a c a d f

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut. vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822 OMTENTAMEN DEL 2 Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103 Examinator: Anna-Carin Larsson Tentamens datum 060822 Jourhavande lärare: Anna-Carin Larsson 070-2699141 Skrivtid 9-14 Resultat meddelas senast:

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Hydraulikcertifiering

Hydraulikcertifiering Grundkurs 1 Facit till Självtest sid. 1:5 UPPGIFT 1 Stryk under de påståenden som Du anser vara riktiga. (Flera alternativ kan vara rätt) a/ Flödet från en hydraulpump bestäms av: (ev förändring i volymetrisk

Läs mer

LOGOTYP SYMBOLER. - Företagssymbol. - Slogan. - Övriga symboler TYPOGRAFI FÄRGSKALA WEBBSIDA TRYCK. - Brevpapper. - Kuvert. - Visitkort.

LOGOTYP SYMBOLER. - Företagssymbol. - Slogan. - Övriga symboler TYPOGRAFI FÄRGSKALA WEBBSIDA TRYCK. - Brevpapper. - Kuvert. - Visitkort. 3 5 LOGOTYP SYMBOLER - Företagssymbol - Slogan - Övriga symboler 8 10 12 14 TYPOGRAFI FÄRGSKALA WEBBSIDA TRYCK - Brevpapper - Kuvert - Visitkort - Kläder LOGOTYP x x x x Logotypen används i alla sammanhang,

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

Skapa en mall för inlämning av skriftliga uppgifter med hjälp av Microsoft Office Word

Skapa en mall för inlämning av skriftliga uppgifter med hjälp av Microsoft Office Word Skapa en mall för inlämning av skriftliga uppgifter med hjälp av Microsoft Office Word Enkel guide till ordbehandling med Word 2010 Medieteknik Södertörns högskola 2 september 2011 Du hittar vilka krav

Läs mer

TimeZero rullbollar.

TimeZero rullbollar. TimeZero rullbollar En komple serie nya rullbollar MCM serien är utvecklad ll a passa i marin miljö där hänsyn är tagen ll enkel och bra mon- tering, enkelt användargränssni, miljö (t.ex. va entålighet)

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

DÄR VÅRA VÄGAR KORSAS

DÄR VÅRA VÄGAR KORSAS DÄR VÅRA VÄAR KORSAS h yf föå fö, fä, ä, ä äy ch! h ö Sf, y ä ch ä fä j ö fö f. E fy å ch ö h å ch å. Å c å, ch å fö ö ch. PERSPEKTIV NYA PARKEN I RÅDUSESPLANADENS FÖRLÄNNIN SITUATIONSPLAN 1:1/A1 1:2/A3

Läs mer

PHOTOSHOP GUIDE. Magnus Servin

PHOTOSHOP GUIDE. Magnus Servin B I L D M O N T A G E En steg-för-steg guide av Magnus Servin. Publicerad 2008-06-18. För fler guider, tips och inspiration se www.familjenservin.se/magnus h i m m e l.jp g Inl e d n i n g Denna guide

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling

Läs mer

Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram)

Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram) Aktivitetsbeskrivning Denna aktivitet är en variant av en klassisk matematiklaboration där eleverna får mäta omkrets och diameter på ett antal cirkelformade föremål för att bestämma ett approximativt värde

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2014 14:00

Läs mer

Väggfäste Universal och Mätarm. Bruksanvisning Läs igenom bruksanvisningen noggrant och förstå innehållet innan du använder Väggfäste Universal.

Väggfäste Universal och Mätarm. Bruksanvisning Läs igenom bruksanvisningen noggrant och förstå innehållet innan du använder Väggfäste Universal. Väggfäste Universal och Mätarm S Bruksanvisning Läs igenom bruksanvisningen noggrant och förstå innehållet innan du använder Väggfäste Universal. Innehållsförteckning Produktinformation... 2 Väggfäste

Läs mer

Fysik TFYA86. Föreläsning 10/11

Fysik TFYA86. Föreläsning 10/11 Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!

Läs mer

Matematisk statistik

Matematisk statistik Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd

Läs mer

Arbetsfysiologi/arbetsprov

Arbetsfysiologi/arbetsprov Arbetsfysiologi/arbetsprov Basal fysiologisk metodik 3 hp Biomedicinska analytiker 1 oktober 2009 Eva Jansson Mål Diskutera begränsande faktorer för olika typer av arbetsförmågor (aerob, anaerob, styrka)

Läs mer

13. DIKTÖRNS SÅNG. l l l l. a 2 2 ff f l. l l l l. a2 ff f l. l l l l. b 2 2f f f. k k k k k k k k

13. DIKTÖRNS SÅNG. l l l l. a 2 2 ff f l. l l l l. a2 ff f l. l l l l. b 2 2f f f. k k k k k k k k 13. DIKTÖRNS SÅNG 70 a 2 2 ff f a2 ff f Ditörn: Ficor: b 2 2f f f Pirater: a 2 2 ff f b2f f f e e f n n J mz o Jag Jag är ett fö-re-dö-me för en ä-ta fö-re - ta - ga-re, en fö-re-bid för star-a - re som

Läs mer

Säkerhetsventil proportionell

Säkerhetsventil proportionell Dimensionsområde PN Temperaturområde Material DN 25-100 40-60 C till +350 ºC Segjärn DN 25-100 40-85 C till +450 ºC Stål Användningsområde Proportionell säkerhetsventil för hetvattenpannor utan ångrum

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Prov i vågrörelselära vt06 Lösningsförslag

Prov i vågrörelselära vt06 Lösningsförslag Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela

Läs mer

Lösningar till övningsuppgifter centralrörelse och Magnetism

Lösningar till övningsuppgifter centralrörelse och Magnetism Lösninga till öningsuppgifte centalöelse ch Magnetism Centalöelse G1 Centipetalacceleatinen a = = 5, m/s = 15,9 m/s 1,7 Sa: 16 m/s G4 (3,5 10 3 ) c 0,045 a m/s =,7 10 8 m/s Sa:,7 10 8 m/s 50 G7 = 50 km/h

Läs mer

Dag Datum Tid Typ av förhandling Målnummer Saken må :00-10:30 Huvudförhandling B Misshandel må :00-10:45

Dag Datum Tid Typ av förhandling Målnummer Saken må :00-10:30 Huvudförhandling B Misshandel må :00-10:45 må 2015-08-31 09:00-10:30 Huvudförhandling B 274-15 Misshandel må 2015-08-31 09:00-10:45 Huvudförhandling B 3221-15 misshandel må 2015-08-31 09:00-11:00 Huvudförhandling B 1727-15 narkotikabrott må 2015-08-31

Läs mer