x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Storlek: px
Starta visningen från sidan:

Download "x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN."

Transkript

1 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b Då ä N a b a b en nomalvekto nomaliktning till tan i punkten a b a b Vekton N ä oientead uppåt etesom z-koodinaten ä Vekton N a b a b ä en tans nomalvekto oientead nedåt etesom z-koodinaten ä - N Ykonstant V konstant V Kot öklaing: Om t t t z t en kuva i R 3 då ä T t t z t kuvans tangentvekto se en lektion om kuvo på paameteom av

2 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione En punkt på tan z ha koodinate Om vi välje konstant b och vaiea endast å vi kuvan b b som ligge på tan och som ha tangent vekton ' ' b Kuvans tangentvekto i punkten P bli däö V ' a ' a b V På samma sätt visa vi att ' a b ä en tangentvekto i punkten P till kuvan a a Häav ä som deinieas av konstanta i j k N V V ' a b a b ' vad skulle visas EXEMPEL : Om z 5 då ä En nomalvekto i punkten P 7 bli då N TANGENTPLAN av

3 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione Fö tangentplanet i P ha vi punktens koodinate a b c och en nomalvekto N a b a b Däö ges tangentplanets ekvation i punkten P a b c på tan z dä c a b av öljande omel a b a a b b z c elle z c a b a a b b som ota skivs på öljande om: Tangentplanets ekvation i punkten P a b a b på tan z ges av z a b a b a a b b EXEMPEL : Om z då ä Tangentplanets ekvation i punkten 4 bli då z 4 LINJÄRA APPROXIMATIONER Låt z vaa en given ta med kontinueliga patiella deivato i en öppen omgivning till punkten Låt vidae z * vaa tangentplanets ekvation i punkten P Om en punkt i -planet ligge näa punkten då kan vi använda tangentplanets ekvation * ö att appoimativt bestämma dvs unktionens väde i : ** 3 av

4 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione 4 av Vi kan också skiva ε *** dä ε beteckna esttem dvs elet vid appoimationen Uttcket ** elle *** kallas ö linjä appoimation elle lineaiseing linjäiseing linjaiseing av unktionen P Q R o o Anda skivsätt: Om vi beteckna Δ och Δ kan vi skiva ε Δ Δ elle ε Δ Δ Anmäkning Appoimatione av höge gad och me om elet behandla vi senae i kusen i samband med Talos omel

5 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione DIFFERENTIAL Vi kan skiva ovanstående appoimationsomel ö unktionen z på öljande sätt: F Om vi beteckna Δ och d kan vi skiva Δ d Uttcket på högesidan i omeln F d kallas dieential till unktionen z och betecknas dz elle d Kotae d Δ Δ Om ä obeoende vaiable beteckna vi Δ d och Δ d och d d d dieential i en allmän punkt På liknande sätt deinieas dieential av en unktion ed n vaiable n d d d L n d n Om ä dieentieba då Δ d EXEMPEL3: Om sin då ä unktionens dieential d cos d sin d DIFFERENTIERBARHET Om en unktion av en vaiabel hadeivatan i en punkt a då ä unktionen automatiskt kontinuelig i denna punkt Detta egenskap gälle INTE ö unktione av lea vaiabel Det inns unktione t e med två va z som ha patiella deivato i en punkt men som ä INTE kontinueliga i punkten 5 av

6 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione Ett eempel : Funktionen z om om ä INTE kontinuelig i punkten tots att båda deivato eistea och som kan visas med hjälp av deivatans deinitionen I många satse inom levaiabelanals ä kavet att en unktion z ha patiella deivato otast ö svag Vi använde otast ett stakae antagande : att unktion ä dieentieba Begeppet dieentieba deiniea vi nedan: DEFINITION: Låt z vaa en unktion deiniead i en öppen mängd D som innehålle en punkt P Vi säge att unktionen ä dieentieba om öljande gälle h k h k h k ε h k dä ε h k om h k På liknande sätt deinieas dieentiebahet ö en unktion av n vaiable Fö en unktion av en vaiabel ä dieentiebahet och deivebahet detsamma Följande sats ä diekt öljd av deinitionen: SATS Om en unktion ä dieentieba i punkten P så ä unktionen kontinuelig i P Nedanstående sats hjälpe oss att undesöka om en unktion ä dieentieba se kusboken ö bevis SATS Låt z vaa en unktion deiniead i en öppen mängd D som innehålle en punkt P Om unktionen ha patiella deivato i D som ä kontinueliga i punkten P så ä unktionen dieentieba i P EXEMPEL 4 Om e sin ha patiella deivato e cos e sin som ä kontinueliga i vaje punkt i R Däö ä unktionen dieentieba i hela R 3 Uppgit Bestäm en nomalvekto till tan z i punkten P 4 6 av

7 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione Lösning: Vi beäkna patiella deivato i punkten P4: 3 3 och substituea i omel n N a b a b 3 Sva: N 3 Uppgit Bestäm alla punkte på tan z dä tans nomalvekto ä paallell med äta linjen L: z 3z Lösning: Linjens iktningsvekto ä v Patiella deivato: Ytans nomalvekto i punkten z ä nu N Vektoena N och v ä paallella om det inns k så att N k v som lede till te skaläa ekvatione: k ekv k ekv och k ekv 3 Enligt sista ekvationen ha vi k som vi använde i östa två ekv och å och elle och som visa att måste vaa positiva och dessutom * 7 av

8 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione Häav och ån en av ovanstående ekvatione till e ölje: 3 ± 3 Etesom positiv ha vi slutligen Fån ha vi att 3 3 z 3 Sva Nomalen i punkten ä paallell med linjen L Uppgit 3 Betakta unktionen z ln 4 a Bestäm tangentplanets ekvation i punkten P b Beäkna appoimativt Lösning: ln Tangentplanet ha ekvation z dvs: z 4 tangentens ekvation elle kotae z 4 7 b Vi appoimativt beäkna genom att substituea i tangentens ekvation Sva 9 Uppgit 4 Betakta unktionen z h 3 h ln h 4 a Lineaisea unktionen king punkten h b Beäkna appoimativt 8 av

9 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione Lösning: 3 ln 3 h 4 4 h 4 h h ln h 4 h h 4 ln 8 8 Anmäkning: Om du tcke att det ä enklae att hantea uttck då kan du bta beteckning till z 3 ln 4 Vi substituea beäknade väden i omeln ö lineaiseing av unktionen z h h h h h h ε h h och å dvs: h h ε Med anda od h h b Vi appoimativt beäkna genom att substituea h i h h Sva 4 6 Uppgit 5 Låt Π vaa det tangentplan till tan z 4 som ä paallell med planet 8 4 z 9 Låt A B och C vaa skäningspunkte mellan tangentplanet Π och koodinatalana Bestäm volmen av pamiden OABC dä O beteckna oigo Lösning: Föst bestämme vi den punkt i vilken tangentplanets nomalvekto N ä paallell med v 8 4 Vi beäkna 9 av

10 Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione N 4 N och v ä paallella om N k v dvs om 4 k 8 4 som ge 4 8k 4k k Häav k/ och z- 7 Tangentplanet I punkten P -7 ä paallell med givna planet I punkten P gälle 4 4 och Dämed bli tangentplanets ekvation i punkten P - 7 z 7 4 elle z 4 Tangentplanet skä alana i öljande punkte: z och dämed A z / och dämed B / z -/4 och dämed B-/4 Basen i pamiden ä ätvinkliga tiangeln OAB med aean aeanoab 4 Volmen av pamiden Bastans aea* höjden Sva: Volmen / 48 v e av

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Flervariabelanalys E2, Vecka 2 Ht08

Flervariabelanalys E2, Vecka 2 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF33 Elläa F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Stömketsläa Mätinstument Batteie ikstömsnät Tvåpolsatsen KK AB Mätning av U och I F/Ö6 F/Ö7 Magnetkets Kondensato Tansiente KK AB Tvåpol mät och sim F/Ö8 F/Ö9 KK3 AB3

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar) B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Matematisk statistik

Matematisk statistik Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng ENAMEN Kursnummer: Moment: Program: Rättande lärare: Eaminator: Datum: id: Hjälpmedel: Omattning oc betgsgränser: HF Matematik ör basår I EN ekniskt basår Marina Arakelan, Jonass Stenolm & Håkan Strömberg

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

Vi antar att f och g ar begränsade och integrerbara funktioner på givna mätbara ( kvadrerbara) områden och att a, b ar konstanter.

Vi antar att f och g ar begränsade och integrerbara funktioner på givna mätbara ( kvadrerbara) områden och att a, b ar konstanter. GNSKAPR HOS UBBLINTGRALR. Vi antar att f och g ar begränsade och integrerbara funktioner på givna mätbara ( kvadrerbara) områden och att a, b ar konstanter. å gäller:., 0 om arean() =0 ( dvs. om är en

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys

Läs mer

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h. öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Gränsvärden Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Innehåll Introduktion 3 2 Gränsvärden 4 2. Gränsvärden då går mot.................... 4 2.2 Gränsvärden då går mot a.....................

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area? Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer