Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Storlek: px
Starta visningen från sidan:

Download "Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx)."

Transkript

1 TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc Emnto: Amn Hllovc Betgsgänse: Mpoäng 4 (fö de som h bonuspoäng med sg fån Intoduktonskusen ä mpoängen5) Fö betg A, B, C, D, E, F kävs, 9, 6,, espektve 9 poäng Hjälpmedel på tentmen TEN: Utdeld fomelbld Mnäkne ej tllåten Kompletteng: 9 poäng på tentmen ge ätt tll kompletteng (betg F) Skv endst på en sd v pppeet Skv nmn och pesonnumme på vje bld Inlämnde uppgfte skll mkes med kss på omslget Denn tentmenslpp få ej behålls utn lämns n tllsmmns med lösnng Fullständg lösnng skll pesentes tll ll uppgfte Uppgft (p) Lös ekvtonssstemet med Gusselmneng 4 5 Uppgft (p) Fö vlk väden på konstnten ä de te vektoen (,,), (,,) och (,,) lnjät beoende? ( Med nd od, bestäm så tt ll te vektoe lgge smm pln) Uppgft (p) Lös ekvtonen 6 Uppgft 4 (p) En tngel h hönen punkten (,, ), (,,), och (,,) Bestäm tngelns e Uppgft 5 (p) Bestäm kotste vståndet fån punkten (,,) tll plnet 4 Uppgft 6 (p) Antg tt och Beäkn ( )

2 Uppgft 7 (p) Antg tt ä en vekto Vs då tt om, dä ä enhetsmtsen, då ä Uppgft 8 (p) ) (p)ekvtonen fö en sfä ä 4 Bestäm skänngspunkten melln denn sfä och lnjen b) (p) Bestäm vståndet melln skänngspunkten Uppgft 9 (p) Fö vlk väden på pmeten h sstemet 6 ) ekt en lösnng b) ngen lösnng c) oändlgt mång lösnng? Uppgft (p) ) Bestäm eldelen v 4 5 c) Rt det komple tl plnet de punkte som stsfe 4 och π π g( ) 4 4 Uppgft (p) Ekvtonen 5 4 beskve en ät lnje det komple tlplnet Sätt och skv ekvtonen på fomen k m Uppgft (p) Bestäm ll (te) lösnng tll ekvtonen 8 Sv på fomen b Lck tll!

3 FACIT Uppgft (p) Lös ekvtonssstemet med Gusselmneng 4 5 Lösnng: 5 4 R R- R - R R R 4 Häv,, Sv:,, Uppgft (p) Fö vlk väden på konstnten ä de te vektoen (,,), (,,) och (,,) lnjät beoende? ( Med nd od, bestäm så tt ll te vektoe lgge smm pln) Lösnng: Metod Volmen v den pllellepped som defnes v de te vektoen ä om och endst om ll te vektoe lgge smm pln Volmen V(fomelbld) ± V Metod De te vektoen ä beoende om och endst om vektoekvtonen (,,)s(,,)t(,,)(,,) h cke tvl lösnng dvs nd lösnng föutom uppenb lösnngen, s, t V dentfe koodnte och få sstemet: s t s ( ) bte plts på Roch R v s s t R R- - R R t s t s t R- R

4 t s t ( ) t Nu se v tt homogen sstemet h oändlgt mång lösnng ( och dämed cke tvl lösnng) om och endst om ± Sv: ± Uppgft (p) Lös ekvtonen 6 Lösnng: Detemnnten D ( 6) ( ) ( 6) 4 ( 4) D ( 4) elle 4 Sv:, 4 Uppgft 4 (p) En tngel h hönen punkten (,, ), (,,), och (,,) Bestäm tngelns e Kll tngelns hön fö A (,,), B (,,) och C (,,) V h AB (,,) och AC (,,) Aen ä då AB AC Föst AB AC ( 4) j( 4) k( 4) (,, ) j k Däfö AB AC Slutlgen, tngelns e ä Sv: Aen ä 7 e 7

5 Uppgft 5 (p) Bestäm kotste vståndet fån punkten (,,) tll plnet 4 Lösnng: Metod (fomeln) V nvände fomeln ( fnns på fomelbld): Avståndet d fån punkten A,, ) tll plnet A B C D ä ( A B C D d A B C Föst skve v plnests ekvton på fomen A B C D (dvs ll teme på en sd), 4, (lltså A4, B och C), och substtue punktens koodnte fomeln: A B C D 4 ( ) 4 d A B C 4 9 Metod (pojekton) Välj en godtcklg punkt plnet; eempelvs (,,) Bld vekton (,,) Plnets nomlvekto: (4,,) och motsvnde enhetsvekto bl (4,,) (4,,) Det kotste vståndet melln punkten P och plnet fås nu med hjälp v pojektonen v på, dvs (,,) (4,,) Sv: Det kotste vståndet melln punkten P och plnet ä le Uppgft 6 (p) Antg tt och Beäkn ( ) Lösnng: ( ) Sv:

6 Uppgft 7 (p) Antg tt ä en vekto Vs då tt om, dä ä enhetsmtsen, då ä Lösnng: VSV! Uppgft 8 (p) Ekvtonen fö en sfä med den 4 och medelpunkten ogo kn skvs som 4 Bestäm skänngspunkten melln denn sfä och lnjen b) (p) Bestäm vståndet melln skänngspunkten Lösnng: ) Lnjen kn skvs om på pmetefom: Fö tt htt skänngspunkten sätte v n lnjens koodnte ekvtonen fö sfäen och söke de väden på pmeten som stsfe sfäens ekvton V få () () 4 4, V substtue, lnjens ekvton och få skänngspunkten: 5 A (,, ) och B (,, ) 5 Sv : A (,, ) och B (,, ) b) Avståndet melln skänngspunkten d AB ( ) ( ) ( )

7 4 Sv b: d le Uppgft 9 (p) Fö vlk väden på pmeten h sstemet 6 ) ekt en lösnng b) ngen lösnng c) oändlgt mång lösnng? Lösnng: Sstemets detemnnt ä det( A) elle Ekt en lösnng om och V undesöke sstemet fö och Fö få v sstemet 6 (motsägelse) ( ngen lösnng ) Fö få v sstemet 9 6 (del ekv med ) (ekv- ekv) oändlgt mång lösnng (ett lösb sstem med en f vbel) Sv: ) Ekt en lösnng om och b) Oändlgt mång lösnng om c) Ingen lösnng om Uppgft (p) ) Bestäm eldelen v 5 4 c) Rt det komple tl plnet de punkte som stsfe

8 4 och π π g( ) 4 4 Lösnng: ) Föst h v Däfö Re() 5 Sv : Re() 5 b) 4 och ( ) Sv: Se fguen Uppgft (p) Ekvtonen 5 4 beskve en ät lnje det komple tlplnet Sätt och skv ekvtonen på fomen k m Lösnng: V substtue 5 4 ekvtonen 5 4 och få ( 5) ( 4) ( ) ( enlgt defntonen v bsolutbeloppet ) ( 5) ( 4) ( ) (kvde båd leden) ( 5) ( 4) ( ) ( föenkl ) Sv: 8 6

9 Uppgft (p) Bestäm ll (te) lösnng tll ekvtonen 8 Sv på fomen b Lösnng: ) 8 ( 8, π g () ; t en fgu) π 8e π kπ / k 8 e, k,, π kπ k e, k,, Fö tt skv lösnngn på " b "- fomen substtue v k,, och få: π π π π π e e (cos sn ) ( ) π π 7π 7π 7π 6 e e (cos sn ) ( vnkeln lgge tedje kvdnten) 6 6 π π ( cos sn ) ( ) 6 6 π π π 6 e e π π (cos sn ) ( ) 6 6 π π (cos sn ) ( vnkeln lgge fjäde kvdnten) 6 6 Sv: Te lösnng:, och

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR Amn Hlloc: EXTRA ÖVNINGAR Vetopodt VEKTRPRDUKT CH TILLÄMPNINGAR Kompln etoe. Defnton: V säge tt,,..., n ä ompln etoe om etoen lgge ett pln nä de stts fån smm pnt. Med nd od, ompln etoe n mn pllellföfltt

Läs mer

TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning

TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning TNA004 Anlys II Sten Nlsson FÖ Kp 7. 7. Inlenng V komme tt eet någ vktg tllämpnng v ntegle. I smtlg ll gö v ett ngenjösesonemng ä en s.k. Remnnsumm övegå en estäm ntegl. Det ä vktgst tt u FÖRSTÅR esonemngen,

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR Armn Hlloc: EXTRA ÖVNINGAR Vetorprodt VEKTORPRODUKT OCH TILLÄMPNINGAR Kompln etorer. Defnton: V säger tt... n är ompln etorer om etorern lgger ett pln när de stts från smm pnt. Med ndr ord ompln etorer

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4). TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:

Läs mer

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid: TENTAMEN Kusnumme: HF Memik fö så I Momen: TEN Pogm: Teknisk så Rände läe: Nicls Hjelm Emino: Nicls Hjelm Dum: -- Tid: :-: Hjälmedel: Fomelsmling: ISBN 98-9--9-8 elle ISBN 98-9--- un neckning. Ing nd fomelsmling

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48)

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48) LEDIGR TILL ROLEM I KITEL 3-48) L 3. α Mg ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning. TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3)

vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3) Tentamen i Matematik HF H 8 okt Tid:. 7. Lärare:Armin Halilovic Hjälpmedel: Formelblad Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter. Betgsgränser:

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

TENTAMEN Datum: 11 feb 08

TENTAMEN Datum: 11 feb 08 TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

Tentamen i ETE115 Ellära och elektronik, 16/8 2017

Tentamen i ETE115 Ellära och elektronik, 16/8 2017 Tentmen ETE Ellär och elektronk, 6/8 07 Tllåtn hjälpmedel: Formelsmlng kretsteor. Observer tt uppgftern nte är sorterde svårghetsordnng. All lösnngr skll ges tydlg motverngr. Två metllobjekt bldr en kondenstor.

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

=============================================== Plan: Låt vara planet genom punkten )

=============================================== Plan: Låt vara planet genom punkten ) Amin Hliloic: EXTRA ÖVNINGAR Rä linje och pln RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punken P som ä pllell med ekon 0 3. Rä linjens ekion på pmeefom en ekoekion 3 Rä linjens ekione på pmeefom:

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i

Läs mer

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3). TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

Detta är Saco GÅ MED I DITT SACOFÖRBUND

Detta är Saco GÅ MED I DITT SACOFÖRBUND d t m f s e g e v S l! m e s k V dem k 2 V sml Sveges kdemke 3 Dett ä Sco Sco, Sveges kdemkes centlognston, bestå v 22 självständg fckföbund och ykesföbund. Tllsmmns ä v öve 650 000 kdemke som ä studente,

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Am Hllovc: EXTRA ÖVNINGAR Besvde sttst BESKRIVANDE STATISTIK GRUNDBEGREPP Följde egepp väds oft vd esvg v ett sttstst mtel: LÄGESMÅTT medelväde, med och tpväde: Låt D[,,, v e tllst som esve ett sttstst

Läs mer

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p)

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p) Tentamen i Matematik HF9 (6H9 jan Tid:.5 7.5 Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1 LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 4 pil 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1. Dt om cceletionen ge en sttning v bilens effet. Kinetis enegi vid 1 m/h:, MJ. Denn enegi fås på 1 seunde vilet medfö tt

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 3

LÖSNINGAR TILL PROBLEM I KAPITEL 3 LÖIGR TILL RLEM I KITEL 3 L 3. Mg α ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften mot de

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT EKVATIONER I de vsni sk vi i på den enklse fomen v ekvione de linjä. ALGEBRAISK LÖSNING AV EKVATIONER Meoden nä mn löse ekvione v fös gden, llså ekvione som innehålle -eme men ej eme v pen,,...

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

Lastbilstrafik Inrikes och utrikes trafik med svenska lastbilar

Lastbilstrafik Inrikes och utrikes trafik med svenska lastbilar Uppsala unvestet Statstska nsttutonen D-uppsats vt 2010 Lastblstafk nkes och utkes tafk med svenska lastbla Effektvae estmaton med hjälpnfomaton? Föfattae: Sopha Olofsson Handledae: Lsbeth Hansson Btädande

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:

Läs mer

lösningar! ger 0 poäng.) i partiella bråk. och deras typ.

lösningar! ger 0 poäng.) i partiella bråk. och deras typ. TENTAMEN Introduktionskurs i Matematik H1009 Datum: augg 018 Tid: 8:15-10 (1.5 hp) Tentamen ger maimalt 1p. För godkändd tentamen krävs 6p. Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel

Läs mer

Tentamen i ETE115 Ellära och elektronik, 3/6 2017

Tentamen i ETE115 Ellära och elektronik, 3/6 2017 Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna. Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:

Läs mer

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1 Hllov: EXR ÖVNINGR Mtse Eleetä äeoetoe MRISER ELEMENÄR RÄKNEOPERIONER Defto Io tete ä e ts ett etgulät she v eell elle ole tl E ts ed de oh oloe sägs h te so v sve då t( M sve oft ( elle ote ( let ä lltså

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer