1 av 12. Armin Halilovic: EXTRA ÖVNINGAR

Storlek: px
Starta visningen från sidan:

Download "1 av 12. Armin Halilovic: EXTRA ÖVNINGAR"

Transkript

1 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt VEKTRPRDUKT CH TILLÄMPNINGAR Kompln etoe. Defnton: V säge tt,,..., n ä ompln etoe om etoen lgge ett pln nä de stts fån smm pnt. Med nd od, ompln etoe n mn pllellföfltt så tt de lgge smm pln. Anmänng: Tå etoe mmet ä lltd ompln och däfö ä fågn ä etoen ompln elle nte ntessnt endst fö te elle fle etoe. Höge- och änstesstem. Antg tt, b och c ä ce- ompln etoe med gemensm sttpnt. V säge tt etoen, b och c, tgn denn odnng, bld ett högesstem höge etotppel om den mnst dnngen som öefö tll en eto med smm tnng som b sns motos, nä bett fån spetsen på c. Vetoen bld, b och c ett änstesstem om dnngen fån tll b sns meds nä bett fån spetsen på c. dnngen melln etoen, b och c ä tg. Te pemttonen, b, c :, b, c, b, c, och c,,b bld smm sstem höge elle änste som, b och c medn fölnde te bld motstt sstem, c,b, c,b, och b,, c Som stndd nände höge N oodntsstem lls äen tesst oodntsstem

2 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt Vetopodt: θ θ Vetopodten sspodten tå etoe betecns defne genom tt nge dess längd och tnng. ä en eto som Defnton. Vetopodten ä den eto som h fölnde egenspe:. Längden etopodten ä snθ. Vetopodten ä otogonl mot både och. m då ä etopodten td så tt, och bld ett högesstem. Anmänng: Låt,,,,, tå etoe ett N oodntsstem. Med hälp onstående Defnton n mn häled fomeln som föls sene teten fö beänng etopodten Låt,,,,,,, I mång böce defnes etopodten det med hälp denn fomel och sedn mn hälede egenspe, och. Alltså en elent defnton ä fölnde: Defnton '. Låt,,,,, tå etoe ett N oodntsstem. Vetopodten defnes genom fölnde fomel def,, EGENSKAPER: def. Fån snθ se tt Vetopodten ä en ds,, om, elle om och ä tå pllell etoe ds θ. eftesom och h motstt tnng, men smm längd

3 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt Alltså etopodten ä INTE ommtt tn ntommtt, tll sllnd fån släpodten. θ. λ λ λ 4. w w w w w den dstbt lgen beset fnns sboen 4. Den pllellogm som bestäms spänns pp etoen och h en bsen höden snθ och dett ä smm tl som beloppet. θ A B Alltså en pllellogmmen som spänns pp och. BERÄKNING AV I ETT N-SYSTEM Fö otonomede bsetoe som betecn,, elle e, e, e defntonen,,,,,,,,. gälle enlgt V n nänd onstående esltt fö tt beän fö tå etoe

4 Amn Hlloc: EXTRA ÖVNINGAR 4 Vetopodt,, och,, s oodnte ä gn ett N-odntsstem. V h:, V nände,,... F Fomeln F ä såt tt omm håg. Mn n nänd fölnde smbols detemnnt fö tt beän. Dett ä ett enelt beänngs sätt om mn n beän detemnnte. Me om detemnnte omme sene sen. Hä fnns beänngsmetode fö detemnnte nd och tede odnngen. En detemnnt nd odnngen ä ett tl som få enlgt fölnde: Eempel En detemnnt tede odnngen en d elle en ollon ä ett tl som få enlgt fölnde n beän genom tt tecl efte Uteclng efte föst den Uteclng efte en d len som helst elle en olonn. Låt D. Fö tt beän detemnnten n nänd en fölnde metode:. Uteclng efte d nmme

5 Amn Hlloc: EXTRA ÖVNINGAR 5 Vetopodt D A A A. Uteclng efte ollon nmme A A D A I dess teclng ä A ndedetemnnten m p pltsen, som få om t bot d nmme och olonn nmme fån detemnnten D. Tecenschem fö. Eempel. Beän fölnde detemnnten: Lösnng: V nände och ämfö tå metode, teclng efte d och teclng efte olonn. Metod Uteclng efte d. 6 5 Metod Uteclng efte olonn dä h tå -element. 6 5 Eempel. V n nänd onstående esltt fö tt beän fö tå etoe Låt,, och,,5 s oodnte ä gn ett N-odntsstem. Beän. Lösnng: Alltså 4,,. S: 4,, SKALÄR TRIPPELPRDUKT Låt,,,,, och w,, te etoe.

6 Amn Hlloc: EXTRA ÖVNINGAR 6 Vetopodt Slä tppelpodt defnes som tlet o w och n beäns det, enlgt defntonen [föst etopodt och däefte w o ]. Ett enelt sätt tt beän slä tppelpodten ä beänng med hälp fälnde detemnnt: o w Geomets tllämpnng: Låt,, och,, Då gälle : w,, te etoe mmet. w C B A. Den pllellepped som bestäms spänns pp, och w h olmen V o w V om,, w bld högesstem. o w V om,, w bld änstesstem om och endst om,, w ä ompln etoe. o, o 4. m betecn ote [,, w] o w då h fölnde eltone beoende på odnngen melln etoen. [,, w] [ w,, ] [, w, ] [,, w] [ w,, ] [, w, ]

7 7 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt C B w A 5. Den pmd som bestäms spänns pp w och, h olmen 6 w V o Uppgft. Beän etopodten då 4,, och,, b, Lösnng: 8,6 4, b,, Anmänng: V få smm esltt b om beän fölnde detemnnt: Uppgft. Beän en den pllellogm som spänns pp etoen,, och,, Lösnng: Pllellogmmens e ä A Föst L -4,, Hä en A S: Pllellogmmens e ä A 9.e. Uppgft.

8 Amn Hlloc: EXTRA ÖVNINGAR 8 Vetopodt Beän en tngeln ABC då A,,, B,,4 och C,,6. b Beän längden höden tngeln ABC, som gå fån pnten C tll sdn AB. Lösnng: AB,,, AC,,4 AB AC,, 4 AB AC AenABC AB AC b Föst AB,,, och däfö AB 5 V h edn beänt en tngeln en. Eftesom en n beäns med hälp fomeln AB hc en bsen * höden / en h h c AB 5 5 S: en e. b höden h c 5 Anmänng: Vetopodt ä defned fö etoe D mmet. Någ poblem D omndl tll D genom tt lägg tll som tede oodnt. Däefte n nänd fomle som nlde etopodt. Uppgft 4. Beän en tngeln PQR som lgge - plnet då P,, Q, och R,4. Lösnng: V nfö tede oodnt och beän en tngeln med hönen pnten A,,, B,, och R,4,. V h AB,,, AC, AB AC,,,

9 Amn Hlloc: EXTRA ÖVNINGAR och däfö AB AC AenABC AB AC 9 Vetopodt Uppgft 5. Vs tt en den pllellogm som spänns pp tådmensonell etoe, och, ä l med A. oodnte ä ett N sstem. Lösnng: V lägge tll tede oodnten och öefö fågn tll ett elent poblem D. V betecn U,,, och V,, och beän etopodten U V Lägg mäe tll tt λ λ λ λ Däfö bl en pllellogmmen A U V Vd slle bess Uppgft 6. V bett te pnte ett -pln P,, Q, och R,. Vs tt en en tngeln PQR ä l med ä l med A. oodnte ä ett N sstem. Lösnng: Låt PQ, och PR, Enlgt föegående ppgft ä en den pllellogm som spänns PQ och PR l med. Dämed bl en tngeln PQR A d slle ss. Aen tngeln PQR ä l med en hl en den plellogm som spänns, och, Uppgft 7. Beän olmen den pllellepped som spänns pp

10 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt etoen,,, b,, och c,4,. Lösnng: b o c Volmen b o c 5 5 S: 5 e. Uppgft 8. Anänd tppelpodten fö tt s tt,,, b,, och c 6,8, ä ompln etoe. b o c 6 8, b och c ä ompln etoe V.S.B. Uppgft 9. Låt och b tå etoe mmet. Beän c, c 5b c b b o c om Lösnng. Set ä fö ll te fll eftesom, b och c ä ompln etoe. Uppgft. Bes b b b Lösnng: Enlgt podtens defntone h fö änsteledet VL: VL b b b snθ b cosθ b sn θ cos θ tgonomets ettn b HL Alltså b b b V.S.B. Uppgft. Låt, och w te etoe mmet som stsfe w 8 w. Vs tt, och w ä ompln etoe. Tps: slämltplce eltonen med en etoen Lösnng: V slämltplce w 8 w w w w 8 w w Eftesom w w och w w h w med w och få

11 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt ds w som mplce tt, och w ä ompln etoe V.S.B Slä tppelpodt defnes som tlet o w och n beäns det, enlgt defntonen [föst etopodt och däefte w o ]. Ett enelt sätt tt beän slä tppelpodten ä beänng med hälp fälnde detemnnt: o w Uppgft. Ett oodntsstem ä defnet ett m ät bloc med dmensone 8m 6m m, enlgt blden nedn. Desstom gälle CGm, AF6m, DEm. Beän olmen pmden GEF. Lösnng: Volmen pllelleppeden som spänns pp etoen G,,, F 6,6, och E 6,8, ä V Volmen pmden GEF ä. 6 S: Volmen pmden GEF m. Uppgft. Låt,, och,, w,, te etoe mmet.

12 Amn Hlloc: EXTRA ÖVNINGAR Vetopodt Bes fomeln w o Lösnng: Vänsteledet: Föst etopodten enlgt fomeln F Däfö w * Högeledet: V tecl detemnnten efte tede den och få ** Fån * och ** h w, d slle bess.

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR Armn Hlloc: EXTRA ÖVNINGAR Vetorprodt VEKTORPRODUKT OCH TILLÄMPNINGAR Kompln etorer. Defnton: V säger tt... n är ompln etorer om etorern lgger ett pln när de stts från smm pnt. Med ndr ord ompln etorer

Läs mer

Inversa matriser och determinanter.

Inversa matriser och determinanter. rmn Halloc: EXTR ÖVNINGR a TILLÄMPNINGR V DETERMINNTER Tllämpnngar a determnanter Inersa matrser och determnanter. En adrats matrs är nerterbar om och endast om det Eftersom matrsen är nerterbar om och

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Am Hllovc: EXTRA ÖVNINGAR Besvde sttst BESKRIVANDE STATISTIK GRUNDBEGREPP Följde egepp väds oft vd esvg v ett sttstst mtel: LÄGESMÅTT medelväde, med och tpväde: Låt D[,,, v e tllst som esve ett sttstst

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT EKVATIONER I de vsni sk vi i på den enklse fomen v ekvione de linjä. ALGEBRAISK LÖSNING AV EKVATIONER Meoden nä mn löse ekvione v fös gden, llså ekvione som innehålle -eme men ej eme v pen,,...

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning

TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning TNA004 Anlys II Sten Nlsson FÖ Kp 7. 7. Inlenng V komme tt eet någ vktg tllämpnng v ntegle. I smtlg ll gö v ett ngenjösesonemng ä en s.k. Remnnsumm övegå en estäm ntegl. Det ä vktgst tt u FÖRSTÅR esonemngen,

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1 Hllov: EXR ÖVNINGR Mtse Eleetä äeoetoe MRISER ELEMENÄR RÄKNEOPERIONER Defto Io tete ä e ts ett etgulät she v eell elle ole tl E ts ed de oh oloe sägs h te so v sve då t( M sve oft ( elle ote ( let ä lltså

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

=============================================== Plan: Låt vara planet genom punkten )

=============================================== Plan: Låt vara planet genom punkten ) Amin Hliloic: EXTRA ÖVNINGAR Rä linje och pln RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punken P som ä pllell med ekon 0 3. Rä linjens ekion på pmeefom en ekoekion 3 Rä linjens ekione på pmeefom:

Läs mer

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1 LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun

Läs mer

Massflödet genom en turbin följer approximativt det tidigare härledda sambandet: Med hjälp av allmänna gaslagen kan sambandet ovan omformas enligt:

Massflödet genom en turbin följer approximativt det tidigare härledda sambandet: Med hjälp av allmänna gaslagen kan sambandet ovan omformas enligt: Lrs Bäcströ 04-0-4, 6 Ångturner F7-F8 Mssflödet geno en turn följer roxtt det tdgre härledd sndet: Där är turnonstnten, den effet strönngsren ( ) ångns tryc före och efter turnen (P) ångns olytet före

Läs mer

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför?

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför? Enmijetet www.enmift.se/enmijetet Smhällsenmi fö ung Enmift h utveclt dett slmteil sm ett mlement till undevisningen i smhällsuns. Syftet ä tt ge eleven en öveginde föståelse fö hu smhällsenmin funge.

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

Symplektisk Geometri

Symplektisk Geometri Symlets eometr Denn genomgång hndlr om tt omformler mltons etoner tll mtrsetoner stället och s l r som ställs å trnsformtonsmtrsen för tt trnsformtonen sll r nons. Dett lls den symlets formlerngen mltons

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 4 pil 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1. Dt om cceletionen ge en sttning v bilens effet. Kinetis enegi vid 1 m/h:, MJ. Denn enegi fås på 1 seunde vilet medfö tt

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Detta är Saco GÅ MED I DITT SACOFÖRBUND

Detta är Saco GÅ MED I DITT SACOFÖRBUND d t m f s e g e v S l! m e s k V dem k 2 V sml Sveges kdemke 3 Dett ä Sco Sco, Sveges kdemkes centlognston, bestå v 22 självständg fckföbund och ykesföbund. Tllsmmns ä v öve 650 000 kdemke som ä studente,

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

KPI-KS (KPI med konstant skatt) och KPIF-KS (KPI med fast ränta och konstant skatt)

KPI-KS (KPI med konstant skatt) och KPIF-KS (KPI med fast ränta och konstant skatt) SCB/ES/PR/KPI Pete Nlsson PM 24-2-8 (7) KPI-KS (KPI med konstant skatt) och KPIF-KS (KPI med fast änta och konstant skatt) Nya konstantskattendex bakgund och syfte SCB beäkna ett nytt ndex, benämnt KPI-KS

Läs mer

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system. Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15 Tentamen i Matemati, HF sep, l 8:-: Examinato: min Halilovic Undevisande läae: Fedi Begholm, Jonas Stenholm, Elias Said Fö godänt betyg ävs av max poäng Betygsgänse: Fö betyg, B, C, D, E ävs,,, espetive

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Mängder i R n. Funktioner från R n till R p

Mängder i R n. Funktioner från R n till R p Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

4 Signaler och system i frekvensplanet Övningar

4 Signaler och system i frekvensplanet Övningar Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

BILAGA 1. GRUNDER ENLIGT 7 5 mom. I LAGEN OM PENSION FÖR KONSTNÄRER OCH SÄRSKILDA GRUPPER AV ARBETSTAGARE

BILAGA 1. GRUNDER ENLIGT 7 5 mom. I LAGEN OM PENSION FÖR KONSTNÄRER OCH SÄRSKILDA GRUPPER AV ARBETSTAGARE 64 97 BLAGA GRER ELGT 7 5 mom. LAGE OM PESO FÖR KOSTÄRER OCH SÄRSKLA GRPPER AV ARBETSTAGARE 97 65. Fösäkngsteknska stohete e fösäkngsteknska stohetena dessa gunde följe de allmänna beäknngsgunde fö pensonsfösäkngsbolagen

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Kapitel 8. Kap.8, Potentialströmning

Kapitel 8. Kap.8, Potentialströmning Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v

Läs mer

Nr 800 BILAGA 1 GRUNDER ENLIGT 9 I LAGEN OM PENSION FÖR ARBETSTAGARE I KORTVARIGA ARBETSFÖRHÅLLANDEN

Nr 800 BILAGA 1 GRUNDER ENLIGT 9 I LAGEN OM PENSION FÖR ARBETSTAGARE I KORTVARIGA ARBETSFÖRHÅLLANDEN 800 400 BILAGA GRUER ELIG 9 I LAGE OM PESIO FÖR ARBESAGARE I KORRIGA ARBESFÖRHÅLLAE 4002 800. Fösäkngsteknska stohete e fösäkngsteknska stohetena dessa gunde motsaa de a socal- och hälsoådsmnsteet fö pensonsfösäkngsbolagen

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

BILAGA 1. GRUNDER ENLIGT 7 5 mom. I LAGEN OM PENSION FÖR KONSTNÄRER OCH SÄRSKILDA GRUPPER AV ARBETSTAGARE

BILAGA 1. GRUNDER ENLIGT 7 5 mom. I LAGEN OM PENSION FÖR KONSTNÄRER OCH SÄRSKILDA GRUPPER AV ARBETSTAGARE 439 245 BLAGA GRER ELG 7 5 mom. LAGE OM PESO FÖR KOSÄRER OCH SÄRSKLA GRPPER A ARBESAGARE 2452 439. Fösäkngsteknska stohete e fösäkngsteknska stohetena dessa gunde följe de allmänna beäknngsgunde fö pensonsfösäkngsbolagen

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

Matlab: Inlämningsuppgift 2

Matlab: Inlämningsuppgift 2 Mtlb: Inläningsuppgift Uppgift : Dynisk däpning. Inledning I denn uppgift skll vi nlyse den dynisk däpningen v tvättskinen so vi studede i pojektet. Se igu nedn. Vi foule föst öelseekvtionen fö systeet

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp min Hlilic: EXR ÖVNINGR Linjä bildning LINJÄR VBILDNINGR INLEDNING: Fnktine bildning Beteckning ch gndbegepp Definitin En fnktin elle bildning fån en mängd till en mängd B ä en egel sm till je element

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Surveysektionens årsmöte 20 oktober 2004.

Surveysektionens årsmöte 20 oktober 2004. uvesektonens åsmöte oktobe 4. åga aspekte på anals av suvedata av Lennat odbeg, CB ----------------------------------------------------------------- Anals av suve-data kan betda allt mölgt...tll eempel:

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer