f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s."

Transkript

1 Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V delr först upp tervllet [, 3] st deltervll med lk lägder. Om v låter tlet delrektglr ök så borde v få e llt bättre ppromto v de verklg re A. I gräsfllet får v de ekt re, A = lm = =. 5.. Del upp ett tervll lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området över = och uder =. = 3 3 = Frå de förr uppgfte får v ett uttrck för deltervlles ädpukter, = + 3 = 3. Om v låter re v delrektgel, med, + som bs, betecks med A, då är A = bse höjde = + f. Eftersom v hr ett eplct uttrck för och + så k v äve ställ upp ett eplct uttrck för A, 3 + A = = = Områdets ekt re A k v ppromer med summ v delrektglrs re, 8 A A = = = = = = + 3 A + = = f Låt oss först rt upp området. Fuktoe = är e tpsk drgrdsfukto. Geom tt kvdrtkompletter får v tt =. I dett uttrck ser v drekt tt mmum fs = där = och tt då ±. Rtr v upp grfe hr de e tpsk prbelform V söker re v det gråfärgde området ov. Området begräss -led v de två -värde där kurv = skär =, d.v.s. = = eller =. V delr upp -tervllet [, ] st deltervll med lk lägder. = 3 = Ett uttrck för deltervlles ädpukter { } är = + =.

2 Om v låter A beteck re v de delrektgel med, + som bs, då är A = bse höjde = + f. Ett eplct uttrck för A är A = + = Områdets ekt re A ppromerr v med summ v delrektglrs re, A A = = = 4 4 = = = = = f + A = = När v låter tlet delrektglr får v de ekt re 4 A = lm = Låt P vr prttoe v tervllet [, 4] st deltervll med lk lägd = b. Beräk Lf, P 4 och Uf, P 4 för f =. där m och M är f:s mst respektve störst värde de olk deltervlle [, ], [, ], [, 3] och [3, 4]. Eftersom f = är strägt väde [, 4] ts m och M deltervlles västr respektve högr ädpukter. V får och summor blr m = f = m = f = 4 M = f = M = f3 = 9 m = f = m 3 = f3 = 9 M = f = 4 M 3 = f4 = 6 Lf, P 4 = = 4 Uf, P 4 = = 3 Lf, P 4 Uf, P Låt P vr prttoe v tervllet [, 4] st deltervll med lk lägd = b e. Vs tt lm Lf, P = lm Uf, P. Därmed är f tegrerbr [, 3]. Vrför? Vd är f d? Uder- och översumm är Lf, P 4 = Uf, P 4 = 3 m, = 3 M, = Uder- och översumm är Lf, P = m, = Uf, P = M, =

3 där m och M är f:s mst respektve störst värde de olk deltervlle. Eftersom f = e är e strägt väde fukto ts m och M deltervlles västr respektve högr ädpukter. Ädpukter är = + 3 = 3 så v får 3 m = f = ep, M = f + = ep = ep + 3 = m e 3/. Alltså är 3 Lf, P = ep 3 = 3 e 3/ = = {geometrsk sere} = 3 Uf, P = m e 3/ 3 = Låter v fås tt = lm Lf, P 3 = lm = = e 3/ 3 m = e3/ Lf, P. e 3/ e 3/ = 3 e 3 e = 3 e 3 3/ lm e3/ e 3 e 3/, 3 e 3 = {Mclurutvecklg} = lm O 3 e 3 = lm + O = e3 lm Uf, P = lm e3/ Lf, P = lm e3/ lm Lf, P = e 3 = e 3. Alltså är lm Lf, P = lm Uf, P = e 3. Om v går tllbk tll deftoe v tegrl så ser v tt f är tegrbel [, 3] om det fs ekt ett tl I så tt Lf, P I Uf, P för ll prttoer P. I vårt fll låter v I = lm Lf, P = lm Uf, P. Lf, P I: Eftersom e översumm lltd är större ä e udersumm, är Låter v fås Uf, P I: På smm sätt är I uk: Låter v fås Lf, P Uf, P. Lf, P I. Uf, P Lf, P. Uf, P I. Gpet mell ll över- och udersummor måste lltd lgg tervllet [Lf, P, Uf, P ] för ll. Eftersom ädpukter dett tervll kovergerr mot I, är gpet ekt e pukt I. V får därmed tt f är tegrbel [, 3] och 5.3. Uttrck gräsvärdet som e bestämd tegrl. e d = I = e 3. lm = Del upp tervllet [, ] st deltervll med lk lägd. I vrje deltervll [ k, ] k+ väljer v e pukt ck = k/. Då är Remsumm v fuktoe f = lk med k Rf, P, c = debte = = k + k= =. k = =

4 Eftersom prttoes fhet går mot oll är d.v.s Beräk tegrle lm R f, P, c = lm = = 3 + d d, d. geom tt väd tegrles egeskper och tolk tegrler som reor. Ljärtete ger tt 3 + d = 3 d + }{{} d. V udersöker de två tegrler högerledet vr för sg. Itegrles värde är re v det gråfärgde området fgure ed. = re = bse höjde = Itegrles värde är re v det gråfärgde området fgure ed. Alltså är 3 + d = 3 + = Beräk tegrle s ds geom tt väd tegrles egeskper och tolk tegrler som reor. Låt oss för ekelhets skull t tt. Ljärtete ger tt s ds = ds }{{} V udersöker de två tegrler vr för sg. s ds. Itegrles värde är re v det gråfärgde området fgure ed. Alltså är =. Sätt fs = s. V hr tt = f s = s = s = fs. d.v.s. f är e jäm fukto, och då är re = bse höjde = = re = bse höjde = = s ds = { s = s för s } = s ds.

5 Itegrle högerledet hr smm värde som re v det gråfärgde området fgure ed. Alltså är =. = re = bse höjde = / Med fu = u 3 oterr v tt f u = u 3 = u 3 = fu, d.v.s. tegrde är udd. Eftersom v tegrerr över ett orgosmmetrskt tervll är tegrle oll. Itegrles värde är re v det gråfärgde området fgure ed. = π Smmtget får v tt Am. Om < blr svret 3. s ds = = =. Alltså är = π. re = π = π 5.4. Beräk tegrle u 5 3u 3 + π du geom tt väd tegrles egeskper och tolk tegrler som reor. Smmtget är det br de tredje tegrle som ger ett bdrg u 5 3u 3 + π du = 3 + = π. Ljärtete ger tt u 5 3u 3 + π du = V udersöker tegrler vr för sg. u 5 du Om v sätter fu = u 5 så oterr v tt u 3 du f u = u 5 = u 5 = fu, + π du d.v.s. tegrde är udd. Eftersom v tegrerr över ett orgosmmetrskt tervll är tegrle oll Beräk tegrle + t 9 t dt geom tt väd tegrles egeskper och tolk tegrler som reor. Ljärtete ger tt + t 9 t dt = 9 t dt V behdlr tegrler högerledet seprt. + t 9 t dt.

6 Om v kvdrerr fuktoe = 9 får v = 9 + = 9. Vår fukto beskrver lltså övre dele v e crkel med rde 3 och mttpukt orgo. Itegrles värde är re v det gråfärgde området fgure ed. Alltså är = 9 π. Sätt ft = t 9 t. V hr tt 3 re = π rde = 9 π f t = t 9 t = t 9 t = ft, d.v.s. tegrde är e udd fukto. Eftersom v tegrerr över ett orgosmmetrskt tervll är tegrle. Smmtget är + t 9 t dt = + = 9 π + = 9π. Sätt f =. V hr då tt f = = = f, d.v.s. tegrde är jäm. V får tt = Med formel uppgftstete får v tt Sätt f = s. V hr tt d. = 6 3 /3 = 44. f = s = s = s = f, d.v.s. fuktoe är udd. Eftersom v tegrerr över ett orgosmmetrskt tervll är tegrle oll. Smmtget är 6 + s d = + = 44 + = Gvet tt d = 3 /3, beräk Ljärtete ger tt 6 + s d = + s d. 6 6 d + V beräkr de två tegrler högerledet seprt. 6 s d F medelvärdet v g = + tervllet [, b]. Medelvärdet ges v tegrle Ljärtete ger tt ĝ = b ĝ = b g d = b d }{{} V behdlr de två tegrler seprt. + b + d. d. }{{}

7 V k skrv om tegrle som [ d = ] d = d d. De två tegrler högerledet hr smm värde som re v respektve trgel fgure ed. Alltså är b b = = b = b. = Itegrles värde är re v det gråfärgde området ed. Alltså är Medelvärdet är lltså b = b. re = b = b ĝ = b + b = b b + b b = + b Beräk 4 d. V vet tt Alltså är d d 3/ = 3 / = 3. d d 3 3/ =. Dett vsr tt 3 3/ är e prmtv fukto tll. Itegrlklkles huvudsts ger tt 4 [ ] 4 d = 3 = = 6/ Beräk 3 d. E prmtv fukto tll är Itegrlklkles huvudsts ger tt. [ 3 d = + ] = + + = + 8 = 7 8.

8 5.5.8 Beräk 9 4 d. E prmtv fukto tll / / är Itegrlklkles huvudsts ger tt Beräk 9 4 3/ 3/ / /. [ d = 3 ] 9 4 = = = = 3/3. e e d Beräk V hr tt d. d d = log Itegrlklkles huvudsts ger tt [ d = log Beräk V errr oss tt / d. Itegrlklkles huvudsts ger tt / ] d =. d log = log log = 3/ log. d d rcs =. d [ ] / = rcs = rcs rcs = π/6. E prmtv fukto tll e e är Itegrlklkles huvudsts ger tt e e = e + e. e e [ ] d = e + e = e + e e + e =. Am. Altertvt k m lägg märke tll tt tegrde är udd och tt tegrtostervllet är orgosmmetrskt, vrför tegrle är oll Beräk re v området som begräss v = /, =, = e och = e. V rtr först upp e skss v hur området ser ut = e = e = /

9 Are v området ges v tegrle e d [ ] e = log = log e log e = log e log e = log e =. e e Beräk re v området över = och uder =. V rtr först e skss v området Beräk re v området uder = och över = /. = V rtr e skss v området. = Områdets re ges v tegrle b Områdets re ges v tegrle d, / d, där är -koordte för de pukt området som är lägst tll höger, d.v.s. -koordte för skärgspukte mell = och = /. Låt oss först bestämm v ger oss på tt beräk tegrle. I pukte = sk kurvor h smm -koordt, d.v.s. = /. V kvdrerr. = /4 4 =. V ser tt = 4 är de lösg v söker. Eftersom v som först steg kvdrerde ekvtoe fs rske tt v troducerde flsk rötter. V kotrollerr därför tt = 4 verklge är e rktg lösg tll. vl v = 4 =, hl v = 4/ =. Områdets re är lltså 4 [ ] 4 / d = 3 /4 = /4 = 4/3. där och b är -koordter för skärgspukter mell = och =. Eftersom = är deferd v två olk uttrck för < resp. > udersöker v dess tervll seprt. < : > : I dett tervll är = =. Skärgspukte mell kurvor ges v ekvtoe = =. De drgrdre hr lösgr = 4 och =. Eftersom edst egtv går dett tervll är skärgspuktes -koordt =. I dett tervll är = =. Skärgspukte mell kurvor ges v ekvtoe = + =. De drgrdsekvto hr lösgr = 3 och = 4. V är br tresserde v postv, så skärgspukte är b = 3.

10 Områdets re ges lltså v tegrle d. Noter tt tegrde är e jäm fukto, så tegrles värde är lk med d = d [ ] = = = 45. Elgt tegrlklkles huvudsts är vrför v får tt Bestäm d dθ cos θ s θ F t = s t, t d 3 s dt t d. d = s t. t F medelvärdet v f = e 3 tervllet [, ]. Medelvärdet ges v tegrle f = Itegrlklkles huvudsts ger tt Bestäm d dt f = 4 t f d = e 3 d. 4 s e 3 d = 4 d. [ ] 3 e3 = e6 e 6. Om F beteckr e prmtv fukto tll, då är d cos θ dθ s θ d = d F cos θ F s θ dθ Elgt tegrlklkles huvudsts är vrför v hr tt d dθ cos θ s θ = F cos θ s θ F s θ cos θ. F =, d = cos θ s θ s θ cos θ = s θ s θ cos θ cos θ = s θ cos θ. Om v låter F beteck e prmtv fukto tll s, då är d 3 s dt t d = d F 3 F t = F t. dt

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

11.7 Kortversion av Kapitel INTEGRALBEGREPPET

11.7 Kortversion av Kapitel INTEGRALBEGREPPET 498 11. INTEGRALBEGREPPET Defiitio 11.16 R är e obestämd itegrl. De beteckr e primitiv fuktio till f(x). Vi smmfttr skillder mell bestämd och obestämd itegrler: Obestämd itegrl: itegrle skr gräser. De

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmi Hliloic: EXR ÖVNINGR Lijär bildigr LINJÄR VBILDNINGR INLEDNING: Fktioer bildigr Beteckigr och grdbegrepp Defiitio E fktio eller bildig frå e mägd till e mägd B är e regel som till ågr elemet i ordr

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

ANVISNING FÖR BROMSDYNAMOMETER- MÄTNING

ANVISNING FÖR BROMSDYNAMOMETER- MÄTNING Ktrll v tug frds tryckluftsrmsr vd esktg ILAGA A ANVISNING FÖR ROMSDYNAMOMETER- MÄTNING Fstställde v rmsrs restd med rmsdymmeter Vd regelud sekter fstställs rmssystemets restd tug frd ch slävgr med rmsdymmetermätgr.

Läs mer

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

www.kitas.se Kitas Frisörgymnasium Nytänkande och kvalitet

www.kitas.se Kitas Frisörgymnasium Nytänkande och kvalitet www.kits.se Kits Frisörgymsium Nytäkde och kvlitet Stimulerde miljö på Mgsisgt Kits Frisör är e lite friskol med 90 elever som erbjuder e kretiv och ispirerde miljö. Utbildige är yrkesförberedde, håller

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

R S T. k a fp n a f s a f a f LAPLACETRANSFORMEN. (Enkelsidig) laplacetransform, forts. z. Antag. xt dt. Följaktligen existerar.

R S T. k a fp n a f s a f a f LAPLACETRANSFORMEN. (Enkelsidig) laplacetransform, forts. z. Antag. xt dt. Följaktligen existerar. Atg Fö 6, 7 & 8 - Lplcetrsormlys 1 LAPLACETRANSFORMEN Låt ~x t xt e t, där R, såd tt z ~x t dt< ågot 0 > 0 R S T xt z < 0 0 xt dt Fölktlge exsterr F F l l ~ q xt q xt (el. grudde.) Fö 6, 7 & 8 - Lplcetrsormlys

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1 Kompletterde lösigsförslg oc ledigr, Mtemtik 000 kurs C, kpitel Här preseters förslg på lösigr oc tips till måg uppgifter i läroboke Mtemtik 000 kurs C Komvu som vi opps kommer tt vr till jälp är du rbetr

Läs mer

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s. Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik

Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Formelamlg tll Geodetk och fotogrammetrk mätg- och beräkgtekk Vero 015-03-04 Geodetk och fotogrammetrk mätg- och beräkgtekk by Latmäteret m.fl. lceed uder a Creatve Commo Erkäade-Ickekommerell-Igaearbetgar

Läs mer

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral ri Hlilovic: EX ÖVNING Mss och tgdput ILLÄMPNING V INEGLE. MSSN OCH YNGDPUN MSSN Huvud etod för eräig v ss för e v e ropp ed desitete, är trippelitegrl, dd so hör till urse i flervriells. Me, ågr el prole

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Vi bygger ut Blå linje till Nacka

Vi bygger ut Blå linje till Nacka Vi bygger ut Blå lije till ck Välkomme till smråd om förlägige v tuelbs Blå lije frå Kugsträdgårde till ck C. Tyck till om möjlig läge för sttiosuppgågr. et sker i smbd med rbetet tt t frm ett förslg till

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Arborelius, Olof Per Ulrik. Olof Arborelius. : Minnesutställning anordnad af Svenska konstnärernas förening Stockholm 1916.

Arborelius, Olof Per Ulrik. Olof Arborelius. : Minnesutställning anordnad af Svenska konstnärernas förening Stockholm 1916. Arborelus, Olof Per Ulrk Olof Arborelus. : Mnnesutställnng anordnad af Svenska konstnärernas förenng 1916. Stockholm 1916. EOD Mljoner böcker bara en knapptrycknng bort. I mer än 10 europeska länder! Tack

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176 FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än l v M Tl på v ll omp T OP Mo D m k u f. lo k o oc gg f å y l T J, m h mobl vg! D lk h komm å ho kk? V gå! Jg h US 7 gåg föu på fvl, m å o jg mglåg få c, u vll jg å lg fm, jj! Och h jg u kk jg få uogf Hy

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER

LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder LINJÄ VBILDNING V PUNKE OCH PUNKMÄNGDE vildig v e puk Vi hr defiier lijär vildigr ell vå vekorru Vi k forell erk puker so orsvekorer och däred erk vildigr

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log.

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log. Lektion 13, Flervariabelanals den 15 februari 2 15.1.2 Skissera vektorfältet och bestäm dess fältlinjer. F, = e + e I varje punkt, har vektorfältet en vektor med komponenter,, d.v.s. vektorn utgående från

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Sätra. Skärholmen. kurva. Sätraskogens naturreservat. vara minst 10 meter höga för att påverkan på närområdet ska bli liten.

Sätra. Skärholmen. kurva. Sätraskogens naturreservat. vara minst 10 meter höga för att påverkan på närområdet ska bli liten. Upprättd de 5 mj 2011 Arbetspl, Beskrivig, E4 Förbifrt Stockholm f å Sätr Sätr Sätrskoges turreservt Gåg- och cykelbro blir kvr i smm läge sv ä ge Skärhol msbäcke Sk ä rh ol m VA-sttio och mottgigssttio

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260 FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Design since 1890. www.vjsince1890.com facebook.com/vjsince1890

Design since 1890. www.vjsince1890.com facebook.com/vjsince1890 Degn nce 1890 wwwvjnce1890com fcebookcom/vjnce1890 Tck tll ll fotogrfer: Rckrd Thoron Angelc Engtröm VJ nce 1890 Ktrn Mäknen 102 62 Stockholm Mthld Svenon Phone: +46 8-720 09 20 Chrlotte Luterbch Ann Moln

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

VINDKRAFTFAKTA. Teknik och säkerhet. Teknik. Säkerhet

VINDKRAFTFAKTA. Teknik och säkerhet. Teknik. Säkerhet VINDKRAFTFAKTA Tekik och säkerhet Tekik Aktuell vidkrftverk bedöms få e vhöjd på som mest 14 meter och e rotordimeter på mell 8-13 meter. Ovsett Totlhöjd verkstyp kommer totlhöjde ite tt överstig 185 meter.

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Snickerier. Räcken & Stolpar, Snickarglädje, Hyllplan, Trädgård, Stolpsystem. Trädetaljer och Produkter som håller stilen på ditt hus

Snickerier. Räcken & Stolpar, Snickarglädje, Hyllplan, Trädgård, Stolpsystem. Trädetaljer och Produkter som håller stilen på ditt hus Srr Trätr Prutr s år st på tt us Rä & Stpr, Srä, Hyp, Träår, Stpsyst Ett ört Sör-r Tstyps yr ystr A & Srä 1840-1900 Hus rå är pr är v på r tt v utsöt ystr srr. Vr uppör trä tt vär räss uppsr räsr. Isprt

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Med funktioner som en lcd display med 10 olika träningsprogram, erbjuder denna cykel en variationsrik träning.

Med funktioner som en lcd display med 10 olika träningsprogram, erbjuder denna cykel en variationsrik träning. Motorstyrd mgnetbroms 6 kg Tränngsdtor Belyst LCD Mster B-4135 Mgnetc Med funktoner som en lcd dsply med 10 olk tränngsprogrm, erbjuder denn cykel en vrtonsrk tränng. Funktoner Td, Dstns, Hstghet, Energförbruknng,

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt

Läs mer

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Var är tvålen. o dk sj jz kkk. um ba - um. um um um um 2 4 j. stan - na upp ett tag och grub - bla, är det nå n som sett min tvål?

Var är tvålen. o dk sj jz kkk. um ba - um. um um um um 2 4 j. stan - na upp ett tag och grub - bla, är det nå n som sett min tvål? är våle Pver Rel rr. Erc Srby Spr Al1 Al 2 Ter Bss 1 Bss 2 Spr f f D G =80 Al f f D 1 Al f f D 2 Ter f f D l M Bss 1 jz d sj jz u b - u u - j u b - u u j s j jz u b - u u s j jz f f f N s v-drr ge- l-ve

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz).

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz). Nr 94 641 Bilaga 1. Det rekommederade värdet för flödestäthete i ett statiskt magetiskt fält (0 Hz). Expoerig Hela kroppe (fortgåede) Magetisk flödestäthet 40 mt Förklarigar till tabelle Äve lägre magetisk

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Symmetriska komponenter, Enlinjediagram och Kortslutningsberäkningar

Symmetriska komponenter, Enlinjediagram och Kortslutningsberäkningar 0-0-8 F6: Per uit system ymmetris ompoeter, Elijedigrm och Kortslutigsberäigr t i Per uit (pu) beräigr Aväds ot iom elrtei och eletris drivsystem Ager impedser, strömmr och späigr som reltiv mått. viss

Läs mer

p Följ Kraft Där, Strå

p Följ Kraft Där, Strå Sånger söndg e domsöndg 0 Söndgsmorgon J.Hydn/J.O.Wlln Söndgsmorgon Musk v J.Hy. Svsk text v J.O.Wlln. Öpp r! Hel An skl bn skl nä kors ms d r m, ljud! bön, ljud? känn m vs, n rym m Se L Hur An m tds t

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer