TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning

Storlek: px
Starta visningen från sidan:

Download "TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning"

Transkript

1 TNA004 Anlys II Sten Nlsson FÖ Kp Inlenng V komme tt eet någ vktg tllämpnng v ntegle. I smtlg ll gö v ett ngenjösesonemng ä en s.k. Remnnsumm övegå en estäm ntegl. Det ä vktgst tt u FÖRSTÅR esonemngen, INTE tt u lä g en mss omle UTANTILL. Du sk själv kunn genomö ess esonemng e ll som ts upp och lknne stutone. Antg tt y = ä en styckvs kontnuelg unkton [, ] V vet å, tt om v h en nelnng v ntevllet [, ] me hjälp v elnngspunkten, =,,..., n ä = 0 < < <... < n = och lgge tätt, så gälle me go ppomton tt n c Dett klls en Remnnsumm se oken s. 97, ä c [ -, ] c c c c n

2 I llmänhet välje mn och nö etecknngen = -. Me våt vl v l ll lk me Då kn Remnnsummn ovn skvs n = + n n och c = och v eteckn em helt enkelt ll me., elle lte slvge. Deensen uk ot ngenjösesonemng esätts me eentlen, vö mn ot skve:, ä ppomtonen övegå en lkhet 0. v. s. å n.

3 7. Beäknng v pln e V låte omået R lgg melln y och y g,, ä g Dett omåe kn också eskvs som R, y :, y g. ö ll, se gu. Omået R stmls eelement me een. Respektve eelement h en A g och v å R:s e som summn v ll eelement,.v.s. V et nlene esonemnget skve v lltså: g A A g A g g A g A. Anm : Dett ä tt etkt som en enton v en v et eskvn omået. Anm : Om v ovn h tt 0 så l en v et pln omåe som egänss v en kontnuelg kuvn y g,, -eln och lnjen och lk me A g

4 Eempel. Beäkn en v et egänse omåe öst kvnten, som egänss v lnjen y 4 och kuvn Lösnng: I. Rt gu y. J E 7. oken. y, 4 II. Bestäm skänngspunkte ntegtonsgänse = 4 = 0 som ge y = = = Os! = lgge nte : kvnten. Dett ge oss y =. 4 = = 4 = = lgge nte : kvnten. som ge oss y =. III. Vlken kuv lgge övest espektve ntevll? IV. Välj eelement geomet och teckn uttyck ö ett esp. ntevll. 0 : A = 4 4 = 5 4 A = 4 V. Beäkn en sökt en. A = = 4 Sv: Sökt e ä ln. e ln 8 = = = ln. e.

5 Kuvo på polä om - Polä koonte och polä kuvo Denton: Låt P v en punkt på en kuv C. Punkten P:s polä koonte ä, ä ä vstånet melln O och P och vnkeln melln -eln och om 0 OP ä lk me om 0 Polä koonte - gu Polä el 4, 4, n, n 0,,, ,,, Smn melln polä och ektngulä koonte: ä kn v en unkton v så tt cos y sn y y tn,

6 V t en polä kuvn cos, 0 Co 0 ö 0 m ö, mn ö 0 Väetell ullos på egen hn cos cos = y sn , , , , Kuvn ts t.e. enlgt: Rt koncentsk ckl me esp. e ö vje väe på. Välj lämplg skl! Använ psse! Rt ståln 0,,,. Använ gskv! 6,. 3 Nu ä et lätt tt pck n punkten me hjälp v e polä koonten 4 Mn kn även komplette väetellen genom tt estämm - och y-koonte på ektngulä om. Dett ä en lämplg lä.

7 Ae på polä om Polemställnng: V vll eäkn en A v et pln omåe som egänss v kuvn och ståln och., Me hjälp v guen nen å v en v et omåe som egänss v kuvågen och ståln,. V å en: A = Dett nses v öljne gu som komme tt ullos på öeläsnngen: Aeelementet ä en ckelsekto me vnkeln och en A

8 Eempel. Beäkn en v omået nnnö kuvn cos, 0. Fgu j coen ovn

9 7. Kuvläng V skll eäkn längen v kuvo gvn på te olk sätt. Kuv eteckns hä me en geksk okstven gmm.. Funktonskuv: : y. Kuv på pmeteom : y y t 3. Kuv på polä om : cos y sn Eempel 3. Vs tt ågelementet e te llen ä. s. s y t 3. s. Funktonskuv: y V skll estämm åglängen s ö kuvn y,, Antg tt y kont på, och. kont på,, se gu. s y V Pythgos sts å v s

10 meelväesstsen enlgt ö ngt c c c c 0 och v skve s och äme l åglängen s Anm: I oken s utös ett lknne esonemng. Stue ett!

11 . Kuv på pmeteom: y y t. Denton: En pmetsk kuv y-plnet enes v öljne ekvtone y y, t Eempel på kuv pmeteom 0t y y 60 0t 5t, 0 t 6 ä t = t s. Kuvn motsv nn v ett öemål som kstts snett uppåt ån höjen 60 m me hstgheten -le konstnt = 0 m/s och egynnelsehstgheten y-le ä 0 m/s. Postv ktnng = uppåt, lutmotstån = 0 N V h y 0 t emg, t 6 0, y 00t.v.s. hstgheten -le ä konstnt = 0 m/s hstgheten y-le ä 0 ete s vänpunk y Bnhstgheten v neslget t = 6 ä , m/s. y6 40 Bnkuvns lutnng v neslget ä y 4 60 y 4 40 vv kuvns tngent v neslget h ekv: Anm: Kuvn t länge än tll et ktsk neslget ö tt ötylg momentnhstghete och kuvtngent v neslget å t = 6,.v.s. punkten, y = 60, 0. Bågläng ö kuv på pmeteom

12 I ett ll lgge ågelementet s melln punkten se gu, y och t +, yt + y t s y y t U eentltngeln å v och lltså t s y t y t y s t y t t t Däme ä kuvågens läng s = y t

13 3. Kuv på polä om: sn cos y Fguen som komme tt ullos på öeläsnngen ge oss eentltngeln, och v å: s = s Etesom v kn skv h v lltså ågelementet s,.v.s. hel kuvns läng ä s =.

14 Eempel 4. Beäkn längen v kuvon c uppgten: J E 7.7 oken. 0, cos 0, e e y c, ln t t y t t Lösnng:

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun

Läs mer

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1 LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48)

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48) LEDIGR TILL ROLEM I KITEL 3-48) L 3. α Mg ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

FYSIKTÄVLINGEN SVENSKA FYSIKERSAMFUNDET. KVALIFICERINGS- OCH LAGTÄVLING 31 januari Lösning: Avstånd till bilden: 1,5 2,0 m = 3,0 m

FYSIKTÄVLINGEN SVENSKA FYSIKERSAMFUNDET. KVALIFICERINGS- OCH LAGTÄVLING 31 januari Lösning: Avstånd till bilden: 1,5 2,0 m = 3,0 m FYSIKÄVLINGEN KVALIFIERINGS- O LAGÄVLING jnui 00 SVENSKA FYSIKERSAFUNDE. Avstånd till bilden:,5,0,0,5,5 5,,5,5 6,5 6 0,5 Sv: Det inns två öjlig kökningsdie, och. . 7 pt/c 7 0 6 pt/ O vi nse solvinden loklt

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

Kapitel 8. Kap.8, Potentialströmning

Kapitel 8. Kap.8, Potentialströmning Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Am Hllovc: EXTRA ÖVNINGAR Besvde sttst BESKRIVANDE STATISTIK GRUNDBEGREPP Följde egepp väds oft vd esvg v ett sttstst mtel: LÄGESMÅTT medelväde, med och tpväde: Låt D[,,, v e tllst som esve ett sttstst

Läs mer

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR

1 av 12. Armin Halilovic: EXTRA ÖVNINGAR Amn Hlloc: EXTRA ÖVNINGAR Vetopodt VEKTRPRDUKT CH TILLÄMPNINGAR Kompln etoe. Defnton: V säge tt,,..., n ä ompln etoe om etoen lgge ett pln nä de stts fån smm pnt. Med nd od, ompln etoe n mn pllellföfltt

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Tillståndsmaskiner. Moore-automat. Mealy-automat. William Sandqvist

Tillståndsmaskiner. Moore-automat. Mealy-automat. William Sandqvist Tllstånsmsknr Moor-utomt Mly-utomt Wllm Snvst wllm@kth.s ÖH. Bstäm tllstånsrm oh tllstånstll ör skvnskrtsn. Vlkn v mollrn Mly llr Moor pssr n på krtsn? Wllm Snvst wllm@kth.s . Ur krtsshmt kn öljn smn ställs

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Tentamen i ETE115 Ellära och elektronik, 16/8 2017

Tentamen i ETE115 Ellära och elektronik, 16/8 2017 Tentmen ETE Ellär och elektronk, 6/8 07 Tllåtn hjälpmedel: Formelsmlng kretsteor. Observer tt uppgftern nte är sorterde svårghetsordnng. All lösnngr skll ges tydlg motverngr. Två metllobjekt bldr en kondenstor.

Läs mer

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol. Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)

Läs mer

Repetition. Repetition. Repetition. X: slumpvariabel (s.v.) betraktas innan ett försök är genomfört. x: observerat värde efter försöket är genomfört.

Repetition. Repetition. Repetition. X: slumpvariabel (s.v.) betraktas innan ett försök är genomfört. x: observerat värde efter försöket är genomfört. X: slumpvrel (s.v.) etrkts nnn ett försök är genomfört. : oservert värde efter försöket är genomfört. En s.v. är kontnuerlg om den kn nt ll tänkr värden ett ntervll. Fördelnngsfunkton (cdf): F () = P(X

Läs mer

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR

1 av 13. Armin Halilovic: EXTRA ÖVNINGAR Armn Hlloc: EXTRA ÖVNINGAR Vetorprodt VEKTORPRODUKT OCH TILLÄMPNINGAR Kompln etorer. Defnton: V säger tt... n är ompln etorer om etorern lgger ett pln när de stts från smm pnt. Med ndr ord ompln etorer

Läs mer

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0) Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll

Läs mer

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176 FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

Med funktioner som en lcd display med 10 olika träningsprogram, erbjuder denna cykel en variationsrik träning.

Med funktioner som en lcd display med 10 olika träningsprogram, erbjuder denna cykel en variationsrik träning. Motorstyrd mgnetbroms 6 kg Tränngsdtor Belyst LCD Mster B-4135 Mgnetc Med funktoner som en lcd dsply med 10 olk tränngsprogrm, erbjuder denn cykel en vrtonsrk tränng. Funktoner Td, Dstns, Hstghet, Energförbruknng,

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 3

LÖSNINGAR TILL PROBLEM I KAPITEL 3 LÖIGR TILL RLEM I KITEL 3 L 3. Mg α ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften mot de

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

Blåsen nu alla (epistel nr 25)

Blåsen nu alla (epistel nr 25) lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 4 pil 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1. Dt om cceletionen ge en sttning v bilens effet. Kinetis enegi vid 1 m/h:, MJ. Denn enegi fås på 1 seunde vilet medfö tt

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma

Läs mer

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än

Louise. Hayde. Nadja. kommer Förbandet är ju nästan klara showen börjar snart och vi har inte ens kommit in än l v M Tl på v ll omp T OP Mo D m k u f. lo k o oc gg f å y l T J, m h mobl vg! D lk h komm å ho kk? V gå! Jg h US 7 gåg föu på fvl, m å o jg mglåg få c, u vll jg å lg fm, jj! Och h jg u kk jg få uogf Hy

Läs mer

1 T v ä r å b ä c k - T v ä r å - l u n d A T v ä r å b ä c k å g * H E e E r i k s d a l D e A V i n d e l n B 2 C Z - s t j

1 T v ä r å b ä c k - T v ä r å - l u n d A T v ä r å b ä c k å g * H E e E r i k s d a l D e A V i n d e l n B 2 C Z - s t j f ö t e c k n n g ö v e h u v u d s c b e f l n t l. a x» d v a a n n s x ä k e n f d e s d ^ a * 4 0 p l s n k o s n n g a ( j ä m f ö K u n g l. f ö o d a n g e n U 69/ 33) v d 9^ ä a u t g å n g. S

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd. H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

st tt r s s ss r t r r r t rs r st ä r st r

st tt r s s ss r t r r r t rs r st ä r st r st tt r s r 3 3 t t 1t r r s ss r t r r r t rs r st ä r st r st ts r3 s s r3 s s t t t t st tt r s r 3 st tt Ö t ts r t r 3 3 t t 1t r r t r r r t t r 1 rt s r ss s t r 1 rt s r Pr 1 s r r t str r r Präs

Läs mer

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1 Hllov: EXR ÖVNINGR Mtse Eleetä äeoetoe MRISER ELEMENÄR RÄKNEOPERIONER Defto Io tete ä e ts ett etgulät she v eell elle ole tl E ts ed de oh oloe sägs h te so v sve då t( M sve oft ( elle ote ( let ä lltså

Läs mer

p Följ Kraft Där, Strå

p Följ Kraft Där, Strå Sånger söndg e domsöndg 0 Söndgsmorgon J.Hydn/J.O.Wlln Söndgsmorgon Musk v J.Hy. Svsk text v J.O.Wlln. Öpp r! Hel An skl bn skl nä kors ms d r m, ljud! bön, ljud? känn m vs, n rym m Se L Hur An m tds t

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

=============================================== Plan: Låt vara planet genom punkten )

=============================================== Plan: Låt vara planet genom punkten ) Amin Hliloic: EXTRA ÖVNINGAR Rä linje och pln RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punken P som ä pllell med ekon 0 3. Rä linjens ekion på pmeefom en ekoekion 3 Rä linjens ekione på pmeefom:

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

Hvor tilfreds er du med din togrejse?

Hvor tilfreds er du med din togrejse? Hvor tlrs r u m n tors? V r ov or n ælp tl t svr tt spørskm. Dn svr skl ælp os tl t skr n o kvltt totrkkn på Kystnn o ovr Ørsun. Spørskmrn nsmls mrr tot. På orån tk o ortst o rs! Inormtonsrkn k l m n o

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna. Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Opp, Amaryllis (Fredmans sång nr 31)

Opp, Amaryllis (Fredmans sång nr 31) Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

TENTAMEN Datum: 11 feb 08

TENTAMEN Datum: 11 feb 08 TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken

Läs mer

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets. (7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde

Läs mer

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on S i da 1 (14 ) A n k o m s tdatum 2018-07 - 09 M R M K on s u l t AB Ut f ä r dad 2018-07 - 16 P e r S a mu el s s on T a v as tg a t a n 34 118 24 S to ck ho lm S w e d en P r o j e kt B e s tnr S p å

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

Matlab: Inlämningsuppgift 2

Matlab: Inlämningsuppgift 2 Mtlb: Inläningsuppgift Uppgift : Dynisk däpning. Inledning I denn uppgift skll vi nlyse den dynisk däpningen v tvättskinen so vi studede i pojektet. Se igu nedn. Vi foule föst öelseekvtionen fö systeet

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer