SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH"

Transkript

1 SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr nu en Lplcetrnsform för h(t) enligt H(s) L[h(t)] h(t)e iωt. h(t)e st där s kn nt ll komplex värden. När s iω så ser vi tt Lplcetrnsformen smmnfller med Fouriertrnsformen. Lplcetrnsformen är lltså generellre än Fouriertrnsformen. För viss s kn det händ tt integrlen ovn inte konvergerr, så vi definierr konvergensområdet till en Lplcetrnsformerd funktion H(s) som de värden på s σ + iω där H(s) är ändlig, dvs för de s-värden där integrlen konvergerr. Exempel. Beräkn Lplcetrnsformen till Dircpulsen δ(t) och bestäm trnsformens konvergensområde. Lösning. δ(t). δ(t)e st δ(t) δ(t)e s Integrlen konvergerr för ll s, så konvergensområdet är hel plnet. Exempel 2. Beräkn Lplcetrnsformen till Hevisidefunktionen u(t) om t, om t < och bestäm trnsformens konvergensområde. Typeset by AMS-TEX

2 Lösning. u(t) [ e st s u(t)e st ] om Re s >, s odefiniert om Re s. e st Integrlen blir odefinierd eftersom uttrycket e st går mot då t går mot om Re s <. Om s så delr vi med noll, också otillåtet. Så konvergensområdet blir Re s >. Exempel 3. Beräkn Lplcetrnsformen till x(t) e t u(t) där är reelt och bestäm trnsformens konvergensområde. Lösning. Vi hr e t u(t) e t u(t)e st [ ] e (s+)t (s + ) om Re{s + } >, s + odefiniert om Re{s + }. e (s+)t Integrlen blir odefinierd eftersom uttrycket e (s+)t går mot då t går mot om Re{s + }. Så konvergensområdet blir Re{s} >. Exempel O.W. 9..e. Beräkn Lplcetrnsformen till x(t) e 5t och bestäm trnsformens konvergensområde. Lösning. e 5t e st + x(t) X(s) e 5t e st. e 5t e st Den först integrlen konvergerr om Re{s} < 5, den ndr om Re{s} > 5, till respektive s 5 och s+5. Konvergensområdet för summn s+5 + s 5 s 2 25 blir 5 < Re{s} < 5. O.W () Bestäm Lplcetrnsformen till x(t) e 5t u(t ). (b) Bestäm A och t så tt g(t) Ae 5t u( t t ) hr smm Lplcetrnsform som x(t). 2

3 Lösning. () x(t) e 5t u(t )e st e (s+5)t ] [ e (s+5)t (s + 5) om Re{s + 5} ; e (s+5) s + 5 om Re{s + 5} >. (b) g(t) A Ae 5t u( t t )e st t e (s+5)t ] t [ e (s+5)t A (s + 5) om Re{s + 5} ; A e(s+5)t s + 5 om Re{s + 5} <, dett ger tt A och t. Det finns lltså två funktioner med smm Lplcetrnsform, de skiljer sig åt på konvergensområdet. O.W Låt x(t) e 5t u(t)+e βt u(t), och låt X(s) vr Lplcetrnsformen till x(t). Om konvergensområdet till X(s) uppfyller Re{s} > 3, vd måste då gäll för β? Absolutintegrbl funtktioner. En funktion x(t) klls bsolutintegrbel om x(t) <. En bsolutintegrbel funktion hr Re{s} i sitt konvergensområde, ty H(iω) när s iω, dvs Re{s}. h(t)e iωt h(t) e iωt h(t) < Funktioner med ändligt definitionsområde. En funktion x(t) sägs h ändligt definitionsområde om x(t) för t utnför ett intervll [, b] fön någr, b. 3

4 En bsolutintegrbel funktion x(t) med ändligt definitionsområde hr hel plnet i sitt konvergensområde: x(t) X(s) dvs integrlen konvergerr lltid. x(t)e st x(t) e st mx{ e s, e sb } x(t)e st x(t) < Höger- och vänstersidig funktion. En funktion x(t) sägs vr högersidig om x(t) för t < T, och vänstersidig om x(t) för t > T, för någr T och T. En högersidig funktion med Re{s} σ i konvergensområdet hr Re{s} > σ i konvergensområdet. En vänstersidig funktion med Re{s} σ i konvergensområdet hr Re{s} < σ i konvergensområdet. Det vill säg, en högersidig funktion hr konvergensområde ett höger hlvpln, en vänstersidig ett vänster hlvpln. Vrje funktion x(t) kn skriv som en summ v en högersidig funktion x H (t) och en vänstersidig funktion x V (t); dett kn underlätt Lplcetrnsformering. Lplcetrnsformen v x(t) konvergerr där Lplcetrnsformen v både x H (t) och x V (t) konvergerr. En funktion med ändligt definitionsområde är både vänstersidig och högersidig. O.W Antg tt x(t) är bsolutintegrbel med en pol för Lplcetrnsformen vid s 2. () Kn x(t) h ändlig utsträckning? (b) Kn x(t) vr vänstersidig? (c) Kn x(t) vr högersidig? (d) Kn x(t) vr dubbelsidig? Lösning. () Vi vet tt X(s) hr en pol vid s, dvs X(2) x(t)e 2t. Men om x(t) då t ligger utnför [, b], så måste och x(t)e 2t x(t)e 2t < e 2b x(t) < e 2b x(t). Alltså måste x(t) och x(t), så då är inte x(t) bsolutintegrbel. Alltså kn inte x(t) h ändlig utsträckning. Svr: nej. är en sådn. (c) Nej, för x(t) är bsolutintegrbel, så då är imginärxeln med i konvergensområdet, och då skll llt höger om denn också vr i konvergensområdet: men då kn det inte finns en pol i s 2. (d) J, för en vänstersidig funktion kn ses som en dubbelsidig som råkr vr noll åt höger. (b) J, e 2t u( t) s 2 4

5 Poler och nollställen för rtionell funktioner. En funktion X(s) är rtionell om den kn skrivs som en kvot X(s) N(s) D(s) där N(s) och D(s) är polynom. Nollställen till N(s) klls nollställen till X(s), och nollställen till D(s) klls poler till X(s) (det är där X(s) går mot oändligheten). Om X(s) går mot noll då s går mot oändligheten, så sägs X(s) h ett nollställe vid oändligheten, om X(s) går mot oändligheten då s går mot oändligheten, så sägs X(s) h en pol vid oändligheten. En rtionell funktion hr ing poler i sitt konvergensområde. O.W Bestäm ntlet noller för ändlig s, och ntlet nollor vid oändligheten. () s+ + s+3 (b) s+ (c) s 2 s 3 s 2 +s+. Lösning. () s+ + s+3 2s+4 (s+)(s+3) som är noll då s 2, och går mot noll då s går mot oändligheten. (b) s+ s 2 s+ (s+)(s ) s som inte är noll för någr ändlig s, då s går mot oändligheten går uttrycket dock mot noll. (c) s 3 s 2 +s+ (s )(s2 +s+) s 2 +s+ s, noll vid s, ingen noll vid oändligheten. Lineritet. Om x (t) hr Lplcetrnsform X (s) med konvergensområde R och x 2 (t) hr Lplcetrnsform X 2 (s) med konvergensområde R 2, så är x (t) + bx 2 (t) X (s) + bx 2 (s) med ett konvergensområde som innehåller R R 2. Bevis. x (t) + bx 2 (t) (x (t) + bx 2 (t))e st x (t)e st + b x 2 (t)e st X (s) + bx 2 (s), där den först integrlen konvergerr i R och den ndr i R 2, så summn konvergerr åtminstone i R R 2. Tidsskift. Om x(t) hr Lplcetrnsform X(s) med konvergensområde R, så är x(t t ) e st X(s) med konvergensområde R. 5

6 Bevis. x(t t ) x(t t )e st e st x(t )e s(t +t ) e st X(s), x(t )e st där integrlen konvergerr för smm s som för X(s), dvs R. Tidssklning. Om x(t) hr Lplcetrnsform X(s) med konvergensområde R, så är x(t) X( s ) med konvergensområde R. Bevis. x(t) x(t)e st x(t)e s (t) X( s ), x(t )e s t med vribelbytet t t. Integrlen konvergerr för s så tt s R, dvs s R. Inverstrnsform. Antg tt x(t) hr Lplcetrnsform X(s) med k.o. R, och tt Res σ ligger i R. Vi hr tt X(σ + iω) x(t)e σ t e iωt F [ x(t)e σ t ] dvs x(t)e σt hr Fouriertrnsform X(σ + iω). Vi kn nu nvänd inversfouriertrnsformen till tt få x(t)e σ t F [X(σ + iω)] 2πi och multiplicerr vi på bägge sidor med e σ t så får vi dvs x(t) 2πi X(σ + iω)e σ t e iωt dω x(t) σ +i X(s)e st ds. 2πi sσ i X(σ + iω)e iωt dω Dett sist är således Inverstrnsformen till lplcetrnsformen. 6

7 Differentiering. Om x(t) hr lplcetrnsform X(s) med konvergensområde R, så är dx(t) sx(s) med ett konvergensområde som innehåller R. Bevis. Med hjälp v inverstrnsformen får vi tt dx(t) d 2πi 2πi 2πi 2πi σ +i sσ i σ +i sσ i σ +i sσ i σ +i sσ i X(s)e st ds X(s) d est ds X(s)se st ds (sx(s))e st ds och dett sist är inverstrnsformen v en funktion som hr sx(s) som lplcetrnsform, dvs dx(t) sx(s). Fltning. Om x (t) hr lplcetrnsform X (s) med konvergensområde R och x 2 (t) hr lplcetrnsform X 2 (s) med konvergensområde R 2, så är x (t) x 2 (t) x (τ)x 2 (t τ)dτ X (s) X 2 (s) med ett konvergensområde som innehåller R R 2. Integrtion. Om x(t) hr lplcetrnsform X(s) med konvergensområde R, så är t x(τ)dτ s X(s) med ett konvergensområde som innehåller R. Bevis. Dett följer v tt u(t) s x(t) X(s) t x(τ)dτ enligt fltningsregeln ovn. x(τ)u(t τ)dτ x(t) u(t) s X(s) 7

8 Ytterligre övningr. O.W O.W O.W Vi vet tt e t u(t) s + Re{s} > Re{ }. Bestäm inverstrnsformen till Lösning. Vi hr tt X(s) 2(s + 2) s 2 ; Re{s} > s + 2 2(s + 2) s 2 + 7s + 2 2(s + 2) (s + 3)(s + 4) A s B s + 3 där A(s + 4) + B(s + 3) 2s + 4 dvs A 2 och B 4. Så X(s) 2 s s + 4. Nu nänder vi lineritet och formeln ovn för tt ur få 2e 3t u(t) + 4e 4t u(t) e t u(t) ; Re{s} > Re{ } s + e 3t u(t) ; Re{s} > 3 s + 3 2e 3t u(t) 2 ; Re{s} > 3 s + 3 e 4t u(t) ; Re{s} > 4. s + 4 4e 4t u(t) 4 ; Re{s} > 4. s s ; Re{s} > 3 och Re{s} > 4 s + 4 så konvergensområdet blir Re{s} > 3 och ursprungsfunktionen blir 2e 3t u(t) + 4e 4t u(t). O.W Låt och g(t) x(t) + αx( t) x(t) βe t u(t) 8

9 och nt tt lplcetrnsformen v g(t) är Bestäm α och β. Lösning. dvs X(s) β s+ G(s) x(t) X(s) s s 2 ; < Re{s} <. β β s + x(t)e st βe t u(t)e st e (s+)t om Re{s + } > fö r Re{s} >. Ur tidssklning får vi tt x( t) x(( )t) X( s ) X( s) β s + β s, med konvergensområde ( ) (Re{s} >, dvs Re{s} <. Nu är g(t) x(t) + αx( t) så lplcetrnsformerr vi dett får vi G(s) L[x(t)] + αl[x( t)] X(s) + αx( s) β ( s + + α β ) s β(s ) αβ(s + ) (s )(s + ) med konvergensområde snittet v konvergensområden till summndern, dvs < Re{s} <. Dett är lik med G(s) om β(s ) αβ(s+) s så tt α och β 2. s s 2 s (s )(s+) O.W Betrkt de två kopplde högersidig signlern dx(t) 2y(t) + δ(t) dy(t) 2x(t). Bestäm X(s) och Y (s) smt konvergensområden. Lösning. Vi lplcetrnsformerr och nvänder deriveringsregeln till tt få [ ] dx(t) L L [ 2y(t)] + L [δ(t)] [ ] dy(t) L L [2x(t)]. 9

10 och sx(s) 2Y (s) + sy (s) 2X(s). Så X(s) s 2Y (s) och in i först ekvtionen ger och s 2 Y (s) 2Y (s) + 2 s Y (s) 2 Y (s) 2 s X(s) s 2 Y (s) s s Både X(s) och Y (s) hr poler vid s 2i, s 2i, så konvergensområdet blir Re{s} > då funktionern vr högersidig. O.W O.W O.W KTH, S- 44 STOCKHOLM, Sweden E-mil ddress:

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Frami transportbult 2,5kN

Frami transportbult 2,5kN 07/2012 Orginlbruksnvisning 999281910 sv Sprs för frmtid behov Frmi trnsportbult 2,5kN rt.nr 588494000 fr.o.m. tillverkningsår 2009 Orginlbruksnvisning Frmi trnsportbult 2,5kN Produktbeskrivning d Underhåll

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik 38/Thoms Munther IDE-sektionen/Högskoln i Hlmstd Formelsmling Reglerteknik Smbnd melln stegsvr och överföringsfunktion ( insignlen u är nedn ett steg med mplitud = som pplicers vid t=, där är llmänt y/

Läs mer

HÄRJEDALENS KOMMUN RENHÅLLNINGSTAXA

HÄRJEDALENS KOMMUN RENHÅLLNINGSTAXA HÄRJEDALENS KOMMUN RENHÅLLNINGSTAXA 2009 Renhållningstx för Härjedlens kommun Antgen v kommunfullmäktige 2006-11-27 1 Den renhållning som enligt miljölken åvilr kommunen, omesörjes v Rexcer AB som hr ntgits

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Webbaserad applikation för administrering av investeringar

Webbaserad applikation för administrering av investeringar Webbserd ppliktion för dministrering v investeringr Dtprtner softwre Dtprtner Oy grundt 1987 i Finlnd Progrmvr och tjänster för investeringsbedömning, värdering och finnsiell modellering I Sverige dotterbolget

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater. Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär

Läs mer

Lödda värmeväxlare, XB

Lödda värmeväxlare, XB Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

C100-LED Duschhörn med LED-Belysning

C100-LED Duschhörn med LED-Belysning SVENSKA C100-LE uschhörn med LE-elysning COPYRIGHT CAINEX A ARUMSPROUKTER, LJUNGY, SWEEN MONTERINGSANVISNING Totl höjd: 1900 mm 6 mm härdt gls A 900 800 700 884 784 684 C 900 800 800 884 784 784 39 8 Prod.#

Läs mer

Skapa uppmärksamhet och få fler besökare till din monter!

Skapa uppmärksamhet och få fler besökare till din monter! Skp uppmärksmhet och få fler esökre till din monter! För tt vinn den tuff tävlingen om uppmärksmheten, på en plts där hel rnschen är smld, gäller det tt slå på stor trummn och tl om tt du finns. Till en

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 EKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och ioloi Gli Pozin enten i eknik FY6 illåtn Hjälpedel: Physics Hndbook eller efy utn en nteckninr, vprorerd räknedos enlit IFM:s reler. Forelslinen

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p. HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll

Läs mer

KLARA Manual för kemikalieregistrerare

KLARA Manual för kemikalieregistrerare KLARA Mnul för kemiklieregistrerre Version 16.4 (2015-05-08) Utrbetd v Anders Thorén och Björn Orheim Först utgåv 2002-11-01 Innehåll Introduktion 3 Vd är KLARA? 3 Systemkrv och övrig informtion 3 Vd säger

Läs mer

Varumärkesfrämjande möjligheter

Varumärkesfrämjande möjligheter Kitmän, Stockholm 18 & 19 februri 2015 Vrumärkefrämjnde möjligheter Tck vre hundrtl uttällre och en mä om växer vrje år, hr ponring blivit ett utmärkt ätt tt kilj ig från ndr och befät in tällning om ett

Läs mer

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Nordbygg.

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Nordbygg. Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på Nordygg. Älvsjö 20 INORMATION Är du intresserd v eller vill ok reklmpltser så kontkt: Susnne Rip, säljre, tel 0-9 3, susnne.rip@stockholmsmssn.se

Läs mer

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. W Monteringsnvisning BLÖTA BOKEN VIKTIG INFORMATION LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS 1 Läs igenom hel nvisningen innn monteringen påbörjs PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR 2 Kontroller produkten

Läs mer

Månadsrapport september 2013. Individ- och familjeomsorg

Månadsrapport september 2013. Individ- och familjeomsorg Måndsrpport september 2013 Individ- och fmiljeomsorg Innehållsförteckning 1 Ekonomi och verksmhet... 3 1.1 Resultt per verksmhet... 3 1.2 Volymer, sttistik och kostndsnyckeltl... 5 Individ- och fmiljeomsorg,

Läs mer

Klass och stil. Dörrinspiration från Daloc

Klass och stil. Dörrinspiration från Daloc Klss oh stil Dörrinspirtion från Dlo Klss oh stil Dörrinspirtion från Dlo Säkerhetsrete sedn 40-tlet. Fmiljeföretget Dlo är Skndinviens lednde levern tör v rnd-, ljud- oh säkerhetsklssde stål- oh trä dörrr.

Läs mer

Det energieffektiva kylbatteriet

Det energieffektiva kylbatteriet Croline Hglund, Civ.ing. SP Sveriges Provnings- och Forskningsinstitut, Energiteknik, Borås, croline.hglund@sp.se Per Fhlén, Prof. Inst. för Instlltionsteknik, CTH, Göteorg, per.fhlen@hvc.chers.se Det

Läs mer

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv

Läs mer

Föreläsning 7b. 3329 Längdskalan är L = 2 3

Föreläsning 7b. 3329 Längdskalan är L = 2 3 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2

Läs mer

Råd och hjälpmedel vid teledokumentation

Råd och hjälpmedel vid teledokumentation Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Fotomässan.

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Fotomässan. PLTS ÖR EVENT LOO Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på otomässn. Älvsjö 20 INORMTION Specifiktion för grfiskt mteril rfisk enheten ehöver h tryckfärdig originl senst

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Profilrapport. Erik Henningson. 21 oktober 2008 KONFIDENTIELLT

Profilrapport. Erik Henningson. 21 oktober 2008 KONFIDENTIELLT Profilrpport 21 oktober 2 KONFIDENTIELLT Profilrpport Introdution 21 oktober 2 Introduktion Denn rpport sk endst tolks v behörig nvändre under ikttgnde v professionell oh yrkesetisk övervägnden. De resultt

Läs mer

KOMMLIN FILIPSTADS. Fax: 0590-615 99 E-post: kommun@fi lipstad.se. Revisionsrapport angående gemensam administrativ nämnd

KOMMLIN FILIPSTADS. Fax: 0590-615 99 E-post: kommun@fi lipstad.se. Revisionsrapport angående gemensam administrativ nämnd FILIPSTADS KOMMLIN Dtum 2013-03-12 För kdnnedom: Kommunstyrelsen Kommuffillmhige Revisionsrpport ngående gemensm dministrtiv nämnd Vi hr, tillsmmns med revisorem i Kristinehmns, Krlskog och Storfors kommuner

Läs mer

Tentamen i Eleffektsystem 2C1240 4 poäng

Tentamen i Eleffektsystem 2C1240 4 poäng Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl 4.00-9.00 (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn

Läs mer

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4 SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,

Läs mer

Grafisk Profil. Välkommen in i Korvpojkarnas grafiska värld.

Grafisk Profil. Välkommen in i Korvpojkarnas grafiska värld. Grfisk Profil Du hr fått den här foldern i Din hnd eftersom Du på något sätt hr med vårt vrumärke och dess reproduktion tt gör. Här finns ll informtion Du behöver för tt se vilk vi är smt vilk typsnitt

Läs mer

7. Sampling och rekonstruktion av signaler

7. Sampling och rekonstruktion av signaler Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid

Läs mer

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD 2 112/213 KAPITEL 1.1 BESTÄMMELSER OM TRANSPORTSKYDD Bestämmelser om trnsportskydd och förpliktelser i smnd med trnsport v frlig ämnen finns i TFÄ-lgen smt i 6, 8 5 mom., 15 1 mom. 5 och 6 punkten och

Läs mer

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck > VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET

Läs mer

T-konsult. Undersökningsrapport. Villagatan 15. Vind svag nordvästlig, luftfuktighet 81%, temp 2,3 grader

T-konsult. Undersökningsrapport. Villagatan 15. Vind svag nordvästlig, luftfuktighet 81%, temp 2,3 grader Unersökningsrpport Villgtn 15 Vin svg norvästlig, luftfuktighet 81%, temp 2,3 grer Dtum: 2011-12-19 Beställre: Sven Svensson Kmeropertör: Tom Gisserg Aress Telefon E-post Hemsi Spikrn 152 070 338 47 70

Läs mer

Programmeringsguide ipfg 1.6

Programmeringsguide ipfg 1.6 Progrmmeringsguide ipfg 1.6 Progrmmeringsklr i-ört pprter (CIC, knl, fullonh) Progrmmeringsklr kom-ört pprter CS-44 Phonk-version Progrmmeringsklr miropprter CS-44 Phonk-version 1 2 1 2 1 2 ipfg 1.6 stndrd

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Studentens Ultimata Guide till Cost-Benefit-Analys

Studentens Ultimata Guide till Cost-Benefit-Analys CERE Working Pper, 2015:15 Studentens Ultimt Guide till Cost-Benefit-Anlys Per-Olov Johnsson *, Hndelshögskoln i Stockholm Krl-Gustf Löfgren *, Umeå Universitet * Centre for Environmentl nd Resource Economics

Läs mer

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de

Läs mer

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176

Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176 FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.

Läs mer

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång Hjälpred Lthunden Virkesåtgång Dimensionering Virkeskvliteter Fuktkvotsklsser Träskydd Virkessortiment Limträsortiment Teller 10 1 2 3 4 5 6 7 8 9 11 12 13 14 Lthunden 1 Lthunden 2 Sommrhus Tjjkovski,

Läs mer

M6410C,L / M7410C Öka / minska ställdon

M6410C,L / M7410C Öka / minska ställdon M8, UEC.13 M6410C,L / M7410C Ök / minsk ställdon SLGLÄNGD 6.5MM PRODUKTINFORMTION ESKRIVNING Kompkt design vilket möjliggör instlltion i trång utrymmen Lång livslängd Låg energiförrukning Visuell indikering

Läs mer

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. MONTERINGSANVISNING BLÖTA BOKEN PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. 1. Läs igenom hel nvisningen innn monteringen påbörjs. 2. Kontroller produkten

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

Gustafsgårds åldringscentrum Ålderdomshem Dagverksamhet Servicecentral

Gustafsgårds åldringscentrum Ålderdomshem Dagverksamhet Servicecentral Gustfsgårds åldringscentrum Ålderdomshem Dgverksmhet Servicecentrl 1 På Gustfsgård uppskttr mn följnde sker: invånres välmående ett gott liv ktivt smrbete med de nhörig kompetens i gerontologisk vård personlens

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

MEDIA PRO. Introduktion BYGG DIN EGEN PC

MEDIA PRO. Introduktion BYGG DIN EGEN PC BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

Från fotbollsplan till affärsplan. Berättelsen om Newbody

Från fotbollsplan till affärsplan. Berättelsen om Newbody Från fotbollspln till ffärspln Berättelsen om Newbody Vi hjälper skolor och föreningr tt tjän pengr till cuper, träningsläger och skolresor. Genom tt sälj vår populär strumpor och underkläder kn de lätt

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

Oleopass Bypass-oljeavskiljare av betong för markförläggning

Oleopass Bypass-oljeavskiljare av betong för markförläggning Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

Obligatoriska uppgifter

Obligatoriska uppgifter TSDT15 Signler & System, del 2 1. Lsse Alfredsson, lsse@isy.liu.se TSDT15 DATORUPPGIFTER 2011 OMGÅNG 1 Obligtorisk uppgifter Fltning och system- & signlnlys med z-trnsformen och fouriertrnsformen och inlednde

Läs mer

Facit - Tänk och Räkna 4a

Facit - Tänk och Räkna 4a Vår tl Fit Tänk oh Räkn 9 9 69 996, 997, 998 998, 999, 000 6 6699, 6700, 670, 670, 670, 670 67 m, 67 m, 67 m 800 m, 900 m, 000 m 900 m, 90 m, 90 m NAF 06 7 9 d 6 8 e 7 76 f 8 8 d 6 e 0 f 8 9 7 8 88 d 80

Läs mer

Nollföljdsmodellering av transformatorer Beräkningar av följdproblem vid ökad kablifiering på mellanspänningsnivå CAROLINE HERMANSSON JONAS OLSSON

Nollföljdsmodellering av transformatorer Beräkningar av följdproblem vid ökad kablifiering på mellanspänningsnivå CAROLINE HERMANSSON JONAS OLSSON Nollföljdsmodellering v trnsformtorer Beräkningr v följdproblem vid ökd kblifiering på mellnspänningsnivå Exmensrbete inom Elteknik CROLNE HERMNSSON JONS OLSSON nstitutionen för Energi och Miljö vdelningen

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

Mötesprotokoll för styrelsen i Chalmers Dykarklubb (802416-3019). Tid och datum: 18:20 19:50, onsdagen den 1:e oktober 2014

Mötesprotokoll för styrelsen i Chalmers Dykarklubb (802416-3019). Tid och datum: 18:20 19:50, onsdagen den 1:e oktober 2014 Mötesprotokoll Mötesprotokoll för styrelsen i Chlmers Dykrklubb (802416-3019). Plts: CDK:s lokl i mskinhuset, Chlmers Chlmers tvärgt 4, Göteborg Tid och dtum: 18:20 19:50, onsdgen den 1:e oktober 2014

Läs mer

Mitt barn skulle aldrig klottra!...eller?

Mitt barn skulle aldrig klottra!...eller? Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt

Läs mer