definitioner och begrepp

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "definitioner och begrepp"

Transkript

1 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl klls tlmängden Q. Rtionell tl kn skrivs i råkform där klls täljre och klls nämnre. Ett råk med täljre klls för ett stmråk. Två råk med smm nämnre klls liknämnig. Två råk med olik nämnre kn görs om till liknämnig råk genom förlängning eller förkortning. Då söker mn efter minst gemensmm nämnre (MGN). Exempel: MGN för och är 6 så vi förlänger =. MGN för och / är 6 så vi förkortr = " "/ Två råk som representerr smm rtionell tl klls ekvivlent, exempelvis är råken " och ekvivlent. " Rtionell tl kn också skrivs i decimlform. Ett decimltl kn h en ändlig decimlutveckling såsom = 0,. I tlet 0, är heltlsdelen 0. Ett decimltl kn h en oändlig decimltlsutveckling såsom =, Prickrn efter sist decimlen indikerr tt decimltlen fortsätter genom en upprepning v smm sekvens i ll oändlighet. Ett rtionellt tl som är större än kn skrivs som råk i lndd form där heltlsdelen nges i heltl direkt följt v den del v tlet som är mindre än. Till exempel: = Avsnitt Övningr tt växl melln råk och decimlform. = 0,666 = 0, = " = " =, = "" = 0,00 =,0 = = = =

2 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt Övningr i tt storleksordn råk. Tips : Relter råken till referenspunktern 0, ½ och och plcer dem på en tllinje. Tips : Sök gemensm nämnre om råken är när vrndr i storlek. : Plcer följnde råk i storleksordning med det minst först: : Sätt ut tecknen >, eller < (större än /mindre än) melln dess råk: : Formuler smndet melln täljre och nämnre för: ) råk som är ekvivlent med ½ ) råk som är större än 0 men väldigt när 0 c) råk som är ekvivlent med d) råk som är större än

3 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt Övningr i tt storleksordn decimltl. : Plcer följnde decimltl i storleksordning med det minst först: (Uttryck inte tl (t ex 7,) som t ex sju komm tre utn sju hel och tre tiondelr) ) 7, 7, 7, 7, ) 0,6 0,6 0,6 0,6 c) 0, 0,0 0, 0,0 d),,,, e) 0, 0,6 0, 0, f) ,7 miljoner 7,6 hundrtusentl : Sätt prvis ihop de tl som är lik. Rit rät linjer melln ringrn och ind ihop tlen. : Mer övningr med jämförelser melln decimltl och tl i råkform ) Hur mång tl finns det melln 0, och 0,? Ge exempel. ) Vilket v tlen 0, och är störst? c) Ange tre olik sätt tt skriv tlet 0,6 på i råkform. d) Fyll i det som skns för tt utryck tlet, som tl i råkform " "" """ " ""

4 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt Övningr i tt dder och sutrher råk. Tips : För råk där nämnren är jämn multipler v eller kn det vr en hjälp tt nvänd pengr eller längdmått i metersystemet som tnkemodell. För råk där nämnren är jämn multipler v kn det vr en stor hjälp tt tänk på klockn som modell. Tllinjen är en r modell för ll råk. Tips : Gör om till gemensm nämnre, helst MGN, när du ehöver. : Beräkn: : Beräkn: Vr+% / + / %+lro /, + /s / + - /s 70%+ % /s + 't 6 lt-, lz-vs %-'/t 7/, - z%-tvn lo l/t - lz l0l/t - /s : Beräkn: ) + = ) + = c) + = d) + = e) + = f) + = : Beräkn: ) = ) = c) = d) = e) = f) = : Beräkn: ) + = ) 6 + = c) + = :6 Förenkl så långt det går: ) + ) + c) + d) e) f)

5 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt 6 Övningr i tt dder och sutrher decimltl. 6: Beräkn och svr i decimlform: ) 7 tiondelr + tiondelr ) hundrdelr + hundrdelr c) tiondelr + tiondelr d) tiondelr + hundrdelr e) tiondel hundrdelr f) tiondelr hundrdelr 6: Beräkn: ), +, ),0 +, c), +,07 d) 7, + 0,76 e), + 0,07 f),0 +, g) 0,7 + 0,0 h) 0,0 + 0,0 i) 0, : Beräkn: ),,7 ),0,0 c) 0,0 0,0 d) 0,6 e) 6, 0,06 f),00 0, g),0-0, h) 0, 0,0 i), 0, 6: Beräkn: ),7 0, + 0, ) 0, + 0,7 + 0, c) 0,0 0, + 0,0 d) 0,7 0, e),,0 f) 0,, 6: Beräkn: ), + =, ) 0, = 0, c), =,7 d) 0, = 0,0 e) + = 0, f) = 0, 6:6 Vilket decimltl pekr pilen på? ) )

6 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt 7 Övningr i tt multiplicer och divider råk. Tips : Aremodellen är oft en stor hjälp för tt förstå och se rimligheten i en multipliktion med råk. Tips : Förläng och förkort för tt förenkl eräkningrn. Tips : Utnyttj den multipliktiv inversen: division med ett tl kn lltid skivs om som multipliktion med inversen. 7: Beräkn: ) = ) = c) 7 = d) = 7: Inversen till ett tl är det tl som vi kn multiplicer med för tt få. Inversen till är ¼ eftersom ¼ =. Inversen till är eftersom = = " = " Inverter följnde råk: " " "# 7: Beräkn: ) = ) / = c) " = d) " / = 7: Beräkn: ) = ) = c) d) g) 0 = e) h) 6 6 = f) = i) 7 = 7: Förenkl så långt det går: ) = ) = c) / () = d) = e) () = f) / = () 6

7 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt Övningr i tt multiplicer och divider decimltl. : Beräkn: (svr i decimlform) ) " ) "" c) """ d), " e), "" f), " g), "" : Dr pilr melln de tl vrs produkt lir : Beräkn ) 6 ) 0,6 c) 6 0, d) 6 0,0 e) 0,6 0, f) 0,6 g)," h) 7 = 0, i) =, j) 0, = 000 k) 0,, l),,,,, : Beräkn: ) ) c) d), e)," f),, g), h),, i),, j),, : Välj rätt lterntiv ) ) 7

8 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt Blndde prolem : Summn v ett tl och dess sjundedel är 6. Vilket är tlet? : Summn v ett tl och dess sjundedel är. Vilket är tlet? : Kristin fick en ok i julklpp. På julfton läste hon / v oken, och på juldgen / v oken. Därefter hde hon sidor kvr. Hur mång sidor hde oken? : Ann, Bo och Ci sk på utflykt. Ann hr med sig två smörgåsr. Bo hr med sig tre smörgåsr. Ci hr ing smörgåsr med istället kronor. De estämmer sig för tt del smörgåsrn så tt ll får lik mycket smörgås. Ci etlr Ann och Bo för det hon får så tt ll hennes pengr går åt och hon hr etlt lik mycket för vrje smörgås (eller del v smörgås). Hur mycket smörgås får vr och en och hur mycket får Ann respektive Bo etlt? : Kungen s: Du får hälften v en tredjedel v en fjärdedel v kungriket. Hur stor del v kungriket fick riddren? :6 Vilken är störst, summn eller produkten v följnde tl? ) och c) och ) d) och och 0.7 Lös ekvtionern ) = c) = ) "# = d) = e) = "

9 0 Cecili Kilhmn & Jokim Mgnusson Avsnitt 0 Prioriteringsregler När vi hr ett uttryck med fler opertioner efter vrndr är det viktigt tt de utförs i rätt ordning. Grundregeln är tt opertionern utförs i läsriktningen, dvs. från vänster till höger, men det finns sker som ryter dett:. Om något står i prentes räkns innehållet i prentesen ut först.. Multipliktion och division går före ddition och sutrktion. Ilnd finns inget tecken lls frmför en prentes, då är det underförstått tt där är en multipliktion: (+) etyder (+) 0: Beräkn ) ) + c) + 0/ d) ( ) + e) + (7 )/(+) f) (+) + (6 7 )/ g) ( (0-6)) 0 : Sätt ut prenteser i uttrycken så tt likhetern sk stämm: ) / + = ) / + = c) / + =

10 0 Cecili Kilhmn & Jokim Mgnusson Fcit Övning = 0,666 = 0, 0, = " " = " = 0,, = " "" " "" =, 0,00 = "# """",0 = "# "" = 0,7... =,7 = : : > > > < < = = = : ) 7, 7, 7, 7, ) 0,6 0,6 0,6 0,6 c) 0,0 0,0 0, 0, d),,,, e) 0, 0,6 0, 0, f) 0, ,6 hundrtusentl : ) " = 0, 0, = =0, =,,7 =, = ) 0, = " 0,7 =, = 0, =, =, = ", = : ) oändligt mång, t ex 0, och 0, ) c) t ex " " "" " " d) ; 0 ; 00 ;, ; ; 0 : " " " " " 6 " 0 " 0

11 0 Cecili Kilhmn & Jokim Mgnusson : " " " : ) ) c) d) e) " f) " : ) ) c) 0 d) " e) " f) " : ) ) " c) " :6 ) ) c) "" " d) e) f) "" " 6: ), ),0 c) 0, d),0 e) 0,0 f), 6: ) 6, ) 6, c) 6,6 d),0 e) 66,06 f), g) 0, h) 0,0 i) 00, 6: ) 0, ), c), d), e) 60,0 f) 0,00 g) 0,0 h) 0, i) 0, 6: ), ) 0,7 c) 0,0 d) 0, e) 0, f) 6: ) 0, ) 0,0 c), d) 0,0 e) t ex 0, + 0, eller 0,0 + 0, f) t ex 0, - 0, eller,7 -, 6:6 ) melln 0,7 och 0, ) melln 0,07 och 0,0 7: ) ) 6 c) d) " 7: "# " " 7: ) ) c) " d) " 7: ) ) 6 c) " d) " e) f) g) 0 h) i) 6

12 0 Cecili Kilhmn & Jokim Mgnusson 7: ) " " ) " c) " " d) () e) f) : ) 0, ) 0,0 c) 0,00 d) 0,0 e) 0,00 f) 0, g) 0,0 : 0 0, 00 0, ,00 0 0, 00 0, , ,000 : ) ), c), d) 0, e) 0, f) 0,6 g) 0,0 h) 0,07 i), j) k) 0, l) 0, : ) 0,7 ), c) d) 6 e) f) g) 0, h) i) j) : ) A ) C : : : 0 : " :6 ) summn ) summn c) produkten d) summn :7 ) x = ) x = c) x = d) x = e) x = 0: ) ) c) d) e) 7 f) 7 g) 0 0: ) / ( + ) = ) + ( + 6) / + = c) ( + ) + 6 / + =

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Mtemtik för sjöingenjörsprogrmmet Mtemtisk Vetenskper 29 ugusti 202 Innehåll Aritmetik och lger. Räkning med nturlig tl och heltl.................... Nturlig tl.......................... 2..2 Negtiv tl...........................

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

I, II, III, IV, V, VI, VII, VIII, IX, X, XI...

I, II, III, IV, V, VI, VII, VIII, IX, X, XI... Olik typer v tl Vi sk se hur vi utgående från de nturlig tlen kn konstruer de hel tlen, de rtionell tlen och de reell tlen och diskuter räknereglern som de uppfyller. Nturlig tl Vi påminner lite om nturlig

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

============================================================

============================================================ H0009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Någr eemel me linjär ekvtioner oh ekvtioner som kn förenkls till linjär ekvtioner. Mn kn förenkl en ekvtion me hjäl v följne

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Algebra. Kapitel 5 Algebra

Algebra. Kapitel 5 Algebra Algebr Kpitel Algebr Kpitlet inleds med tt elevern ges möjlighet tt tolk och skriv lgebrisk uttrck. De räknr också ut värdet v olik uttrck. Elevern får sedn rbet med mönster. De ritr mönstren smt beskriver

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

24/09/2013. Talrepresentationer" Digital Aritmetik Unsigned Integers Signed Integers" Positiva Heltal" Addition" Heltal" Addition"

24/09/2013. Talrepresentationer Digital Aritmetik Unsigned Integers Signed Integers Positiva Heltal Addition Heltal Addition 24/9/23 Slide! Per Lindgren! EISLAB! Per.Lindgren@ltu.e! Digitl Aritmetik Unigned Integer Signed Integer" Originl Slide! Ingo Snder! KTH/ICT/ES! ingo@kth.e! Tlrepreenttioner" Ett tl kn repreenter inärt

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater. Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer,

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, Avsnitt 6 INDUKTIVA OC DEDUKTIVA RESONEMANG Med induktion menr mn vnligen en mycket vnlig resonemngsmetod: mn gör fler observtioner, upptäcker ett mönster (eller något som mn tror är ett mönster) därefter

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

freeleaks Funktioner, inverser och logaritmer 1(17)

freeleaks Funktioner, inverser och logaritmer 1(17) freeleks Funktioner, inverser och logritmer (7) Innehåll Förord Funktioner och inverser Multipliktion och division........................ Kvdrer och kvdrtrot......................... Eponentilfunktion

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Sommarmatte. Matematiska Vetenskaper. 8 april 2009

Sommarmatte. Matematiska Vetenskaper. 8 april 2009 Innehåll Sommrmtte del Mtemtisk Vetenskper 8 pril 009 5 Ekvtioner och olikheter 5. Komple tl............ 5.. Algebrisk definition, imginär rötter....... 5.. Geometrisk representtion, polär koordinter...

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor

Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor Elektroteknik MF1016 föreläsning 11 Permnetmgnet Synkronmotor (I oken 7. 8 PM-synkronmotorn) Likheter oh skillnder med likströmsmskinen Enfsig modell (klls även per fs modell ) Ström oh moment Vrvtl oh

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

Facit - Tänk och Räkna 4a

Facit - Tänk och Räkna 4a Vår tl Fit Tänk oh Räkn 9 9 69 996, 997, 998 998, 999, 000 6 6699, 6700, 670, 670, 670, 670 67 m, 67 m, 67 m 800 m, 900 m, 000 m 900 m, 90 m, 90 m NAF 06 7 9 d 6 8 e 7 76 f 8 8 d 6 e 0 f 8 9 7 8 88 d 80

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter)

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter) Grfer Jokim Nivre Uppsl universitet Institutionen för lingvistik oh filologi Översikt Grunegrepp: Noer (hörn) oh ågr (knter) Grfteoretisk egrepp: Stigr oh ykler Delgrfer oh smmnhängne grfer Rikte oh orikte

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Föreläsningsanteckningar i analys I januari 2009

Föreläsningsanteckningar i analys I januari 2009 Föreläsningsnteckningr i nlys I jnuri 009 Pvo Slminen Görn Högnäs bsert på Protter-Morrey: A First Course in Rel Anlysis Innehåll 1 Introduktion 5 1.1 De reell tlen................................... 5

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. matematik Torbjörn Tambour. Matematik för kemister K1 Matematik för naturvetare I

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. matematik Torbjörn Tambour. Matematik för kemister K1 Matematik för naturvetare I MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Av. mtemtik Torbjörn Tmbour Mtemtik för kemister K Mtemtik för nturvetre I Bråk och bråkräkning Om u tycker tt u behärskr bråkräkning så behöver u inte

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna uppdrg: mtte Gunnr Kryger ndres Hernvld Hns Perssn Len Zetterqvist Mttespnrn ISN 978-9-7-0- ndres Hernvld, Gunnr Kryger, Hns Perssn, Len Zetterqvist ch Liber re d k t i n Mirvi Unge Thrsén, Mri Österlund

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2 RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO

Läs mer

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

Facit - Tänk och Räkna 6a

Facit - Tänk och Räkna 6a Fit - Tänk oh Räkn I tlens värl - - - - - - Åttiosextusen trehunrfem Åttiosextusen trehunrfem 8 0 9 089 8 8 8 0 9 80 9 9 9 80 0 99 098 99 099 99 00 89 899 89 900 89 90 008 009 00 9 999 0 000 0 00 90 988

Läs mer

Oleopass Bypass-oljeavskiljare av betong för markförläggning

Oleopass Bypass-oljeavskiljare av betong för markförläggning Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

1. Tvätta händerna och abborrens yttre samt använd rent material. Lägg abborren på skärbrädan framför dig. Studera dess utseende.

1. Tvätta händerna och abborrens yttre samt använd rent material. Lägg abborren på skärbrädan framför dig. Studera dess utseende. 1 st färsk orre - Denn kn du köp i en livsmedelsutik som hr fiskdisk. Koll så tt den inte livit rensd (men hr de oftst inte livit). Aorren ör helst väg 250 g eller mer, nnrs kn det li lite pilligt. 1 st

Läs mer

Grundläggande logik. Lösningsdel. Kaj B Hansen och Taeda Jovicic. Kapitel 2: Lösningar till övningarna på s 38-40. 2-6.1 (a) (A (B A)) är en formel.

Grundläggande logik. Lösningsdel. Kaj B Hansen och Taeda Jovicic. Kapitel 2: Lösningar till övningarna på s 38-40. 2-6.1 (a) (A (B A)) är en formel. Kpitel 2: Lösningr till övningrn på s 38-40 2-6.1 (A (B A)) är en formel. Kj B Hnsen och Ted Jovicic Grundläggnde logik (1) A och B är formler enligt (1) (2) A är en formel (*enligt (1)*) A är en formel

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

Råd och hjälpmedel vid teledokumentation

Råd och hjälpmedel vid teledokumentation Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner

Läs mer

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet

Läs mer

SLING MONTERINGS- OCH BRUKSANVISNING

SLING MONTERINGS- OCH BRUKSANVISNING SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD 2 112/213 KAPITEL 1.1 BESTÄMMELSER OM TRANSPORTSKYDD Bestämmelser om trnsportskydd och förpliktelser i smnd med trnsport v frlig ämnen finns i TFÄ-lgen smt i 6, 8 5 mom., 15 1 mom. 5 och 6 punkten och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7 Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång Hjälpred Lthunden Virkesåtgång Dimensionering Virkeskvliteter Fuktkvotsklsser Träskydd Virkessortiment Limträsortiment Teller 10 1 2 3 4 5 6 7 8 9 11 12 13 14 Lthunden 1 Lthunden 2 Sommrhus Tjjkovski,

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Skogstorp i framtiden

Skogstorp i framtiden I SKOGSTORP www.skogstorp.om/soildemokrtern Skogstorp i frmtiden Redovisning v enkät genomförd under perioden Novemer- Deemer 2005. 1. Tyker Du liksom fler v oss tt det ehövs yggs en förifrt utnför skogstorp?

Läs mer

Allmän information (1 av 1)

Allmän information (1 av 1) ASI Uppföljning ASI Uppföljning är en stndrdintervju för uppföljning v personer i missruks- och eroendevård. Den nvänds för tt stämm v personens sitution och hjälpehov smt för uppföljning v instser. Intervjun

Läs mer