Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Storlek: px
Starta visningen från sidan:

Download "Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7."

Transkript

1 Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för en ordentlig genomgång v determinnter. Här är det därför extr viktigt tt du skriver ner ll frågor som dyker upp och tr med till föreläsningrn/lektionern. Elementär mtriser. En elementär mtris fås genom tt mn på en enhetsmtris gör en rdopertion (yter plts på två rder, multiplicerr en rd med ett nollskilt tl eller till en rd dderr en godtycklig multipel v en nnn rd. Exempel på elementär mtriser är I (som fås genom tt en godtycklig rd i I multiplicers med, E, E 4, E 5 E fås genom tt ndr- och tredje rden i I yter plts. E fås genom tt ndr rden i I multiplicers med 4. E fås genom tt mn till den tredje rden i I dderr 5 gånger den först rden. Inversen och trnspontet v en elementärmtris är också en elementärmtris. Till exempel hr vi E E E T, E E T och E 4, E 5, E T 5 Elementär mtriser svrr mot rdopertioner på så sätt tt om E fås genom en viss rdopertion på I m (till exempel tt tredje rden i I multiplicers med α så gäller, för vrje m n-mtris A, tt EA är identisk med den mtris som fås genom tt gör denn rdopertion (tredje rden i A multiplicers med α på A. Eftersom vrje mtris A är rdekvivlent med en reducerd trppmtris C finns det lltså en följd E,..., E p v elementär mtriser så tt Dett ger oss följnde E p E A C A E E p C (# Sts. Vrje mtris kn skrivs som en produkt v elementär mtriser följt v en (reducerd trppmtris. Om m n gäller tt A är inverterr om och endst om C I, vilket ger Sts. En (kvdrtisk mtris A är inverterr om och endst om A kn skrivs som en produkt v elementär mtriser.

2 och A som produkter v elementär mtri- ( Exempel. Skriv mtrisern A 4 ser. Lösning. Vi nvänder följnde nottion: Att rd sk lämns oförändrd nges genom tt vi skriver till höger om rd. Att rd sk yts mot rd minus tre gånger rd nges genom tt vi skriver till höger om rd. Att rd och rd sk yt plts nges genom tt vi skriver till höger om rd och till höger om rd o.s.v. Till höger om symolen skriver vi sedn den mtris som rdopertionen (rdopertionern ger upphov till. ( 4 ( + ( De elementär mtriser som svrr mot rdopertionern fås nu genom ( ( ( + Av ovnstående följer tt E E ( E ( ( ( och och och A E E E och A E E E. ( ( ( E ( E ( E Exempel. Låt A Beräkn A. Skriv mtrisern A och A som produkter v elementär mtriser. Lösning. Utgående från A gör vi en serie rdopertioner tills vi får enhetsmtrisen: I

3 Elementrmtrisern som svrr mot de fyr rdopertionern fås nu genom E E E E 4 Ovnstående inneär tt E 4 E E E A I. Det följer tt och E och E och E och E 4 A E 4 E E E och A E E E E 4 A E 4 E E E E E E Se även prolem, i redovisningsuppgiftern till lektion, som du hittr på kurshemsidn. Determinnter. Till vrje kvdrtisk mtris A R (n,n hör ett unikt tl som sägs vr A:s determinnt och eteckns det(a, det A eller A (lodrät streck till vänster- och till höger om mtrisen. Används eteckningen A är det onödigt tt h kvr prentesern som normlt omgärdr mtrisen. Först måste förstås determinnten definiers. Eftersom definitionen är rätt omständig väntr vi dock med dett (se nedn.

4 Ur definitionen är det lätt tt, i tur och ordning, härled ett ntl egenskper hos determinnten, som är värdefull vid dess eräknnde. Vi nger dess egenskper i den ordning de härleds: Determinnten v en mtris med en nollrd eller nollkolonn. Av definitionen följer genst (se nedn tt om A hr en nollrd eller en nollkolonn så är det A. Determinnten v en tringulär mtris. Determinnten v en uppåt- eller nedåt tringulär mtris d d A O... respektive A... O d n d n ges v det A d d n (produkten v tlen i huvuddigonlen. Exempelvis gäller tt det(i n, det ((4( och en tringulär mtris hr determinnten noll om och endst om det finns en noll i digonlen. Rdytesstsen. Denn säger tt om mtrisen B fås genom tt två rder i A yter plts så gäller det A det B. Till exempel det det. Av rdytesstsen följer direkt tt om A hr två lik rder så gäller det A. Lineritetsstsen för rder. Antg tt de tre mtrisern A, A, A är identisk förutom tt där λ, µ är sklärer och r, r, r Till exempel det 7 8 r λ r + µ r är de r:te rdern i A, A respektive A. Då gäller det A λ det(a + µ det(a ( det det λ λ + (4 det (λ det 4

5 Determinnten efter en rdopertion. Av lineritetsstsen följer två viktig räkneregler: Om mtrisen B fås genom tt en multipel v en rd i mtrisen A dders till en nnn rd i A så gäller det A det B. Bevis. Antg tt r r + µ s (r:te rden i B fås genom tt mn till r:te rden i A dderr µ gånger den s:te rden i A, där s r. Låt A vr identisk med A, förutom tt rd r i A är identisk med rd s i A. Lineritetsstsen ger det B det(a + µ det(a det(a eftersom det(a, på grund v tt rdern r och s är lik. Om mtrisen A fås genom tt en rd i mtrisen A multiplicers med ett tl λ så gäller det A λ det(a. Bevis. Antg tt r λ r (r:te rden i A fås genom tt den r:te rden i A multiplicers med λ. Låt A vr identisk med A, förutom tt rd r i A är en nollrd. Lineritetsstsen ger det A λ det(a + det(a λ det(a eftersom det(a, på grund v tt A hr en nollrd. Exempel Determinnten v en elementär mtris. Av ovnstående följer tt det och λ 5 λ. Den tredje typen v elementrmtris, som fås genom tt två rder i enhetsmtrisen yter plts, hr determinnten. Till exempel det Rdytes- och lineritetsstsern kn uttrycks som tt för vrje kvdrtisk mtris B och vrje elementär mtris E gäller tt det(eb (det E(det B. Genom upprepd nvändning v dett får vi tt om A E E k B, där E,..., E k är elementär mtriser, så gäller det A (det E (det E k (det B 5

6 Exempel. Låt ( A c d där och d c. Skriv A som en produkt v elementrmtriser och nvänd denn för tt vis tt c d d c. Lösning. En följd rdopertioner, med utgångspunkt från A, ger ( c d ( ( ( c d c ( ( ( d c ( I Motsvrnde följd v elementrmtriser fås genom tt gör rdopertionern på en enhetsmtris: ( ( ( ( E och E Vi hr därför ( ( ( ( E c c och ( E och ( ( E 4 och ( E c ( E ( E 4 Det följer tt A E ( E det(a c E E 4 ( c ( ( d ((((/ d c. Inverterrhet och determinnt. Vi vet tt vrje kvdrtisk mtris A R (n,n är rdekvivlent med en reducerd trppmtris B. Det etyder tt A E E k B, där E,..., E k är elementär mtriser och B är en uppåt tringulär mtris. Av det sist påståendet under föregående punkt följer tt det A (det E (det E k (det B 6

7 Om A är inverterr gäller B I n, vilket medför tt A E E k och det A (det E (det E k. Om A inte är inverterr är sist rden i B en nollrd, vilket medför tt det B och det A (det E (det E k (det B. Alltså är följnde tre påståenden ekvivlent: A är inverterr. A kn skrivs som en produkt v elementär mtriser. A hr nollskild determinnt. Determinntproduktstsen. Denn säger tt om A, B är två kvdrtisk mtriser v smm ordning så gäller det(ab (det A(det B ( Bevis. Om A inte är inverterr så gäller detsmm för AB, v vilket följer tt åd leden i ( är lik med noll. Om A är inverterr så kn vi skriv A E E k där E,..., E k är elementär mtriser. Det följer tt det(ab det(e E k B (det E det(e E k B (det E (det E k (det B det(e E k (det B (det A(det B Om B A ger ( det I det(a A (det A(det A det(a det A Determinnten v trnspontet. För vrje kvdrtisk mtris A gäller tt det(a T det A. Bevis. Först oserverr vi tt om E är en elementär mtris så är även E T en elementär mtris med smm determinnt. Om A inte är inverterr så gäller detsmm för A T, v vilket följer tt det(a T det A. Om A är inverterr så kn vi skriv A E E k där E,..., E k är elementär mtriser. Det följer tt A T E T k ET det(a T det(e T k det(et det(e det(e k det A. 7

8 Av denn sts följer genst tt ovnstående regler för hur determinnten påverks vid rdopertioner gäller oförändrde för kolonnopertioner. Exempelvis: Om mtrisen B fås genom tt en multipel v en kolonn i mtrisen A dders till en nnn kolonn i A så gäller det B det A. Determinntens definition. Vi hr ovn räknt upp en rd egenskper hos determinntfunktionen, som tillsmmns gör tt vi nu effektivt kn eräkn determinnten v en mtris. Än så länge vilr dock dett på lös grund eftersom vi underlåtit tt definier determinnten. I lärooken gör mn en definition som eror på en sts som ldrig eviss. Det är även si och så med evisen v determinnträknereglern. Det klssisk sättet tt definier determinnten är som följer: Först definiers determinnten v en (generliserd digonlmtris. Exempel på sådn mtriser är ( C, B c, 4 4 För en digonlmtris gäller lltså tt det i vrje rd eller kolonn finns högst ett nollskilt tl. Determinnten v en digonlmtris definiers som noll om mtrisen hr en nollrd (vilket är ekvivlent med tt den hr en nollkolonn. Annrs definiers den som plus eller minus produkten v de nollskild tlen i mtrisen. Det etyder tt det C ±c, det B ±, det ± 4 4 För tt vgör tecknet (plus eller minus frmför produkten går mn igenom rdern och räknr, för det nollskild elementet i vrje rd, hur mång v de nollskild elementen i de nednliggnde rdern som efinner sig snett ner till vänster. När dett är gjort dderr mn de funn ntlen och får ett heltl N. Om N är jämnt sk mn sätt ett plustecken frmför produkten. Om N är udd sk ett minustecken sätts frmför produkten. I mtrisen C efinner sig tlet c snett ner till vänster i förhållnde till tlet, vilket ger N. Det etyder tt det C c. I mtrisen B efinner sig snett ner till vänster i förhållnde till och, vilket ger N. Alltså hr vi det B. I mtrisen efinner sig och 4 snett ner till vänster i förhållnde till och 4. Elementet 4 efinner sig också snett ner till vänster i förhållnde till. Smmntget ger dett N Det etyder tt det 4 4. Alterntivt kn mn räkn hur mång rdyten som ehövs för tt, 4,, 4 sk hmn längs huvuddigonlen. Vi får, genom ett rdyte i tget

9 Vi räknr till tre rdyten. Eftersom tre är ett udd tl hr vi det 4 4. Antg nu tt A ( ij är en godtycklig n n-mtris. Vi säger tt vi plockr ut en digonlmtris ur A om rdern i fås genom tt mn i vrje rd i A ehåller ett v elementen, medn ll de övrig yts ut mot nollor. Oserver tt mn, för tt få en digonlmtris, måste se till tt inget pr v de ehålln elementen efinner sig i smm rd eller smm kolonn. Mtrisen ovn är, till exempel, en v de digonlmtriser som kn plocks ut ur mtrisen A Hur mång digonlmtriser kn plocks ut ur ovnstående 4 4-mtris A? I vrje rd sk mn ehåll ett v elementen. Det etyder tt vi i först rden kn välj tt ehåll vilket som helst v de fyr elementen. När dett är gjort hr vi r tre element tt välj lnd i ndr rden, eftersom vi inte kn välj elementet som efinner sig i smm kolonn som det vld elementet i först rden. Efter det finns det r två element tt välj lnd i tredje rden, eftersom två v de fyr kolonnern redn är upptgn v elementen vi vlde ur de två först rdern. Slutligen finns det, v smm skäl, r ett element mn kn välj tt ehåll ur den fjärde rden. Totlt finns det lltså (4((( 4! 4 digonlmtriser mn kn plock ut ur en 4 4-mtris. På smm sätt inses tt det finns totlt (n(n (( n! digonlmtriser som mn kn plock ut ur en n n-mtris. Determinnten v en godtycklig n n-mtris A kn nu definiers genom det A det( (A där (A etecknr mängden v ll digonlmtriser som mn kn plock ut ur A. Av definitionen följer genst tt om A hr en nollrd eller en nollkolonn så gäller det A. Exempel. ( det c d ( det d ( + det c d c. Exempel. Vis tt determinnten v en tringulär mtris är lik med produkten v elementen i huvuddigonlen. Lösning. För enkelhetens skull ntr vi tt det är fråg om en uppåt tringulär 4 4- mtris 4 A

10 En digonlmtris som vi kn plock ut ur A är D 44 Då inget v elementen,,, 44 efinner sig snett ner till vänster i förhållnde till ett nnt v dess element så gäller det D 44. Eftersom ll digonlmtriser som kn plocks ur A innehåller ett tl ur vrje kolonn i A kommer det( om vi inte väljer ur den först kolonnen. På smm sätt är det klrt tt det( om vi inte väljer ur den ndr kolonnen. Vi kn ju inte välj eftersom det elementet efinner sig i först rden där vi redn tvingts välj. Smm rgument tvingr oss tt välj ur kolonn tre och 44 ur kolonn fyr, ty nnrs får vi grntert det(. Alltså hr vi det A det( det D 44 (A Ovnstående resonemng fungerr på tringulär mtriser v godtycklig ordning. Rdytesstsen. Om mtrisen B fås genom tt två rder i A yter plts så gäller det A det B. Bevis. Antg till tt örj med tt A är en digonlmtris. Då är även B en digonlmtris. Om A innehåller en nollrd gäller detsmm för B, vilket ger det A det B. T nu fllet då A sknr nollrd (ll digonlelementen är nollskild och tt det ehövs ett udd ntl rdyten för tt plcer de nollskild tlen längs huvuddigonlen. Om två rder yter plts, vrvid B uppstår, kommer det tt ehövs ett jämnt ntl rdyten för tt plcer de nollskild tlen längs huvuddigonlen. För tt inse dett örjr vi med tt yt tillk de två rdern som nyss ytte plts, så tt vi återfår A. Därefter fortsätter vi med ett det udd ntl rdyten som ehövs för tt få de nollskild tlen längs huvuddigonlen. Men ett udd tl plus ett ger ett jämnt tl. Det etyder tt det A det B. Om det i stället ehövs ett jämnt ntl rdyten för tt plcer de nollskild tlen i A längs huvuddigonlen kommer det, på smm sätt, tt ehövs ett udd ntl rdyten för tt plcer de nollskild tlen i B längs huvuddigonlen. Återigen får vi det A det B. Antg nu tt A är en godtycklig kvdrtisk mtris och tt mtrisen B uppstår genom tt rdern r och s yter plts. Vi hr då det A det( (A där (A etecknr mängden v ll digonlmtriser som mn kn plock ut ur A. För vrje (A låter vi eteckn digonlmtrisen som uppstår då rdern r och s i yter plts. Vi visde ovn tt det( det(. Eftersom (B { (A} gäller tt det B det( (A det( det A. (A

11 Lineritetsstsen för rder. Antg tt de tre mtrisern A, A, A är identisk förutom tt där λ, µ är sklärer och r, r, r r λ r + µ r är de r:te rdern i A, A respektive A. Då gäller det A λ det(a + µ det(a Bevis. Antg först tt A, A, A är digonlmtriser. För elementen, rj, rj, rj i rd r gäller då tt rj λ rj + µ rj. För ll i r och ll j gäller tt ij ij ij. Om digonlelementen i de tre mtrisern är på pltsern (, j,..., (r, j r,..., (n, j n och vi sätter p σ,j r,jr r+,jr+ n,jn där σ ± är tecknet som sk sätts frmför produkten v digonlelementen, så gäller Eftersom r,jr λ r,j r + µ r,j r följer tt I det llmänn fllet hr vi det A det A p r,jr det(a p r,j r det(a p r,j r det A λ det(a + µ det(a det( det A det( det A det( (A (A (A där mtrisern,, är identisk förutom tt vilket, enligt ovn, medför tt (r:te rden i λ (r:te rden i + µ (r:te rden i det( λ det( + µ det( Det följer tt det A λ det(a + µ det(a Minorer. Låt A vr en n n-mtris. För r n, k n definiers minoren M rk som determinnten v den (n (n -mtris som återstår då mn stryker rd r och kolonn k i A. Om, till exempel, A så hr vi M M M, M, M, M 4, M, M, M

12 Mtrisen med ll minorer är M M M M M M M M M M 4 Kofktormtrisen. Kofktormtrisen C fås genom tt mn tr mtrisen med ll minorer och yter tecken på ll element M ij sådn tt i + j är udd (schckrädet. Om A är som ovn får vi, till exempel, C C C C C C C C C C M M M M M M M M M 4 Utveckling efter rd eller kolonn. Om vi fortsätter exemplet ovn ser vi tt 4 C + C + C C + C + C C + C + C C + C + C C + C + C C + C + C det A. Dett gäller även llmänt: För en godtycklig n n-mtris A och för godtycklig r n, k n, hr vi det A r C r + r C r + + rn C rn ( r k C k + k C k + + nk C nk ( k Determinnten fås genom utveckling efter rd r eller kolonn k. Beviset för dett fås genom nvändning v lineritetsstsen: Rd r i mtrisen A kn skrivs som summn v rdvektorern ( r,,...,, (, r,...,,..., (,,..., rn. Låt A (k eteckn mtrisen som är identisk med A, förutom tt rd r är (,...,, rk,,...,. Enligt lineritetsstsen gäller då tt det A det A ( + + det A (k + + det A (n En godtycklig term i högerledet är,k k,k+ n det A (k r, r,k r,k r,k+ r,n rk r+, r+,k r+,k r+,k+ r+,n n n,k nk n,k+ nn ( r+k rk. M rk ( r+k rk M rk rk C rk

13 där M rk är minoren som fås då rd r och kolonn k stryks i A. Fktorn ( r+k uppkommer på grund v tt vi i A (k flyttr rd r r steg uppåt och kolonn k k steg åt vänster. De åd sist likhetern följer v determinntdefinitionen och tt C rk ( r+k M rk. Av ( r och ( k följer också tt r C s + r C s + + rn C sn då r s j C k + j C k + + nj C nk då j k Av dett följer slutligen tt om dj(a (den till A djungerde mtrisen etecknr trnspontet till kofktormtrisen C så gäller A dj(a (det AI n (# Vi ser v (# tt A är inverterr om och endst om det A, i vilket fll A det A dj(a Dett är dock, i llmänhet, ett ineffektivt sätt tt eräkn inversen.

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden

Läs mer

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Datorernas matematik

Datorernas matematik Stockholms mtemtisk cirkel Dtorerns mtemtik Dniel Ahlsén Jor Bgge Institutionen för mtemtik, KTH och Mtemtisk institutionen, Stockholms universitet 2019 2020 Stockholms mtemtisk cirkel genom tidern (tidigre

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik

Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Mtemtik för sjöingenjörsprogrmmet Mtemtisk Vetenskper 29 ugusti 202 Innehåll Aritmetik och lger. Räkning med nturlig tl och heltl.................... Nturlig tl.......................... 2..2 Negtiv tl...........................

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07 Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Föreläsning 3: Strängmatchning

Föreläsning 3: Strängmatchning 2D1458, Prolemlösning oh progrmmering under press Föreläsning 3: Strängmthning Dtum: 2006-09-18 Srienter: Miel Elisson, Joim Erisson oh Mts Linnder Föreläsre: Miel Goldmnn Denn föreläsning ehndlr prolemet

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1 Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Samling av bevis som krävs på tentan MVE465, 2018

Samling av bevis som krävs på tentan MVE465, 2018 Smling v bevis som krävs på tentn MVE5, 8 Meelväresstsen för integrler. Det är Theorem, på si. i Ams. Lecture, si. -8 Om f är en kontinuerlig funktion på intervllet [; b], så nns et en punkt c [; b] sån

Läs mer

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater. Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i snnolikhetsklkyl och sttistik Smmnfttning, del I G. Gripenerg Alto-universitetet 6 feruri 2015 1 Snnolikheter Oeroende Betingd snnolikhet Byes formel Klssisk snnolikhet och komintorik

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Björnen och sköldpaddan Analys av en matematiskt paradoks

Björnen och sköldpaddan Analys av en matematiskt paradoks Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Tentamen i ETE115 Ellära och elektronik, 4/1 2017

Tentamen i ETE115 Ellära och elektronik, 4/1 2017 Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Definition: Linjär avbildning

Definition: Linjär avbildning Definition: vektorrum Ett vektorrum V är en icke-tom mängd v vektorer vilk mn kn dder och multiplicer med en sklär enligt reglern nedn. För vektorern u, v, w V, och sklärern c, d R sk gäll: Föreläsning

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer