Ett förspel till Z -transformen Fibonaccitalen

Storlek: px
Starta visningen från sidan:

Download "Ett förspel till Z -transformen Fibonaccitalen"

Transkript

1 Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt. I boken presenterdes följnde räkneproblem: Antg tt en nyfödd knin blir fertil efter en månd, och tt ett kninpr (hne och hon) en månd senre och fortlöpnde vrje månd därefter producerr två ny kniner (hne och hon), som i sin tur blir fertil efter en månd och därefter producerr två ny kniner, osv. Hur mång kninpr hr mn efter 1 månder, om mn strtr med ett nyfött kninpr? Kninfrmens tillväxt beskrivs bäst med ett binärt träd som nednför, där 6 genertioner viss. De blå nodern i trädet representerr nyfödd kninpr och de grå representerr kninpr som är minst en månd gml.

2 Ett förspel till Z-trnsformen.nb Rekursionsformel Antlet kninpr månd för månd kn beskrivs med en enkel s.k. rekursionsformel: f Hn + L = f Hn + 1L + f HnL, där n œ 80, 1, < och f H0L = 0, f H1L = 1. Här är en härledning v rekursionsformeln: Kninfrmen hr två typer v kninpr: De nyfödd () och de äldre () vilk är minst en månd gml. Beträffnde dess två typer, så kn mn konstter tt (i) tt de äldre pren på nivå n är lik mång som smtlig pr på nivå n - 1. (ii) tt ntlet nyfödd pr på nivå n är lik mång som smtlig pr på nivå n -. Förklringen v (i) är tt vrje äldre pr vr en månd innn v typ eller. (Vd nnrs?) Och omvänt, tt vrje kninpr månden innn är nu (en månd senre) grntert v typ äldre. Hur förklrs (ii) då? Få se Vrje nyfött kninpr på den n:te nivån kom till världen just den n:te månden. Och inget kninpr kommer från storken, utn från ett nnt kninpr. Närmre bestämt från ett kninpr som är minst två månder gmmlt. Det betyder tt vrje nyfött kninpr på nivå n kommer från ett kninpr på nivå n -. Omvänt, vrje kninpr på nivå n - är minst två månder gmmlt två månder senre, dvs. på nivån n, och ger då upphov till ett nytt kninpr. Således finns det en 1-1 vbildning melln de nyfödd kninpren på nivå n, och smtlig kninpr på nivå n -. Av (i) och (ii) följer - om f HnL betecknr ntlet kninpr den n:te månden - tt f HnL = f Hn - 1L + f Hn - L, n œ 8, 3, 4, < f H0L = 0 och f H1L = 1. HbsfllL Rekursionsformeln ovnför uttrycker smm sk som f Hn + L = f Hn + 1L + f HnL, n œ 80, 1,, < Med hjälp v den nmärkningsvärt enkl rekursionsformeln och bsfllen är det lätt tt beräkn det en tlet efter det ndr. Tlen ifråg klls

3 3 Ett förspel till Z-trnsformen.nb Med hjälp v den nmärkningsvärt enkl rekursionsformeln och bsfllen är det lätt tt beräkn det en tlet efter det ndr. Tlen ifråg klls för Fibonccitl. f HL = f H1L + f H0L = = 1 f H3L = f HL + f H1L = = f H4L = f H3L + f HL = + 1 = 3 f HL = f H4L = 3 + = f H6L = f HL + f H4L = + 3 = 8 f H7L = f H6L + f HL = 8 + = 13 Enkelheten hos rekursionsformeln hr en bksid. Om mn vill beräkn t.ex. f H1000L måste mn först beräkn f H999L och f H998L. Och för tt beräkn de senre måste mn först beräkn. J, du förstår säkert. Det är det som är rekursion. Att mn måste "gå tillbk" och räkn ut en enklre sk först. All dess beräkningr utmynnr i ett omfttnde rbete, även om det är ändligt. Ju större Fibonccitl mn vill beräkn, ju fler beräkningssteg blir det. Annorlund skulle det vr om mn hde en sluten formel. Sluten formel Med en sluten formel mens tt ntlet beräkningssteg som formeln ger upphov till är oberoende v storleken på input. Det finns en märklig sluten formel för just Fibonccitlen. f HnL = n + 1+ n n -n, n udd, n jämn Nednför nvänds formeln för tt generer någr inlednde Fibonccitl. Som du ser är ntlet räkneopertioner oberoende v vilket Fibonccitl som beräkns.

4 Ett förspel till Z-trnsformen.nb 4 f H1L = 1 I1+ M+ 1+ = + I1+ M = 1 f HL = J 1 I1+ MN -K 1+ O = I+3 M I1+ M = 1 f H3L = J 1 I1+ MN3 +K 1+ O3 = 16 I+ M I1+ M 3 = f H4L = J 1 I1+ MN4 -K 1+ O4 = 4 I1+7 M I1+ M 4 = 3 Det märklig med denn formel är tt den nvänder ett irrtionellt tl, f = 1+, för tt generer hel tl. "Att gå över ån för tt hämt vtten" är emellertid en inte helt ovnligt teknik vid problemlösning. Vi sk strx härled nämnd formel. Medn en härledning v rekursionsformeln är "rkt på" och befrid från teknikliteter, kommer den slutn formelns härledning (som förresten bsers på rekursionsformeln) tt vr reltivt teknisk. Men vr inte rädd! Vi sk t det vrsmt. Den teknisk pprten är i själv verket huvudintresset för oss just nu. Om båd sidor v rekursionsformeln multiplicers med -n erhålls Dvs. f Hn + L -n Hf Hn + 1L + f HnLL -n, n œ 80, 1,, < f HL f H0L + f H1L f H3L f H1L+f HL f H4L f HL+f H3L f HL f H3L+f H4L 3 3 ª Efter summtion v smtlig dess likheter uppstår en likhet med mång termer på vrder sidn om likhetstecknet

5 Ett förspel till Z-trnsformen.nb Efter summtion v smtlig dess likheter uppstår en likhet med mång termer på vrder sidn om likhetstecknet n f Hn + L -n = Hf Hn + 1L + f HnLL -n n Här är en utskriven version v smm sk f HL + f H4L f HL + f H1L + f H1L + f H0L + + f H3L + f HL Efter omgruppering v termern i högerledet förändrs likheten till f HL f H1L + f HL + f H4L + f H1L + + f H0L + Om bsfllen pluggs in (i högerledet) får vi f HL + f H4L f HL f HL f HL + De tre seriern (den i vänsterledet och de två i högerledet) blir mer jämförbr efter en tvångsutbrytning v respektive ur de två först seriern: f HL f HL f HL 3 + Efter en smärre omskrivning v vänsterledet blir resulttet Voil! 1 + f HL 1 + f HL f HL 3 + FHL - FHL + FHL (1) om vi sätter

6 Ett förspel till Z-trnsformen.nb 6 om vi sätter FHL 1 + f HL f HnL 3 + n. n=1 Det är lätt tt lös ut FHL ur (1). Resulttet blir FHL --1. Mn kn säg tt vi så här långt, med hjälp v n f HnL -n, hr vbildt den rekursivt definierde Fiboncciföljden på funktionen f H0L, f H1L, f HL, FHL Snrt skll vi kör vbildningen bklänges, dvs. vbild F tillbk på f. Resulttet kommer grntert tt överrsk läsren. Prtilbråksuppdelning v ë I - - 1M leder oss i rätt riktning. Antg tt nämnrens nollställen är och b. Då är H - L H - bl b - b b 1 - b b - b b b b IHL -1 + I - b M - + I 3 - b 3 M -3 + M n - b n n 1 Vribelbytet # -n förvndlr likheten

7 7 Ett förspel till Z-trnsformen.nb Vribelbytet # förvndlr likheten = 1 1- till J N + = Den senre förvndls i sin tur till + J N + J N3 + = 1- efter multipliktion på bägge sidor med. Vi hr således vist tt FHL = n - b n -n. n 1 -b Å ndr sidn är FHL = n 1 f HnL -n. Om koefficientern i de två seriern identifiers, följer formeln f HnL n - b n Men vd är och b? Dvs. vilk nollställen hr - - 1? Läsren uppmns tt själv vis tt de är 1+ och Det störst v nollställen är det berömd gyllene snittet f och är ungefär Differensen melln det störst och det minst är lik med. Noter också tt det en är lik med minus det ndr invertert. Det följer tt f HnL = fn - I-f -1 M n = fn + H-1L n+1 f -n = f n + f -n, n udd f n - f -n., n jämn ()

8 Ett förspel till Z-trnsformen.nb 8 Smmnfttning Vi härledde den slutn formeln () genom tt först vbild Fiboncciföljden (given rekursivt) på den kontinuerligt definierde FHL vi serien n=0 f HnL -n, därefter gör en klkyl på -sidn, och slutligen kör vbildningen bklänges (dvs. "plock ut" seriens koefficienter).

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Skogstorp i framtiden

Skogstorp i framtiden I SKOGSTORP www.skogstorp.om/soildemokrtern Skogstorp i frmtiden Redovisning v enkät genomförd under perioden Novemer- Deemer 2005. 1. Tyker Du liksom fler v oss tt det ehövs yggs en förifrt utnför skogstorp?

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Tentamen i Eleffektsystem 2C1240 4 poäng

Tentamen i Eleffektsystem 2C1240 4 poäng Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl 4.00-9.00 (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn

Läs mer

Facit - Tänk och Räkna 4a

Facit - Tänk och Räkna 4a Vår tl Fit Tänk oh Räkn 9 9 69 996, 997, 998 998, 999, 000 6 6699, 6700, 670, 670, 670, 670 67 m, 67 m, 67 m 800 m, 900 m, 000 m 900 m, 90 m, 90 m NAF 06 7 9 d 6 8 e 7 76 f 8 8 d 6 e 0 f 8 9 7 8 88 d 80

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

GENETIK. en introduktion av Ingela Carlén 1988 och 1999

GENETIK. en introduktion av Ingela Carlén 1988 och 1999 GENETIK en introduktion v Ingel Crlén 1988 och 1999 Innehållsförteckning Innehåll Sidn Förord 3 Kromosomer 4 DN 4 Muttioner 5 Gregor Mendel 5 Mendels metod 6 Mendelklyvning (monohybrid) 6 Dihybrid klyvning

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

Gustafsgårds åldringscentrum Ålderdomshem Dagverksamhet Servicecentral

Gustafsgårds åldringscentrum Ålderdomshem Dagverksamhet Servicecentral Gustfsgårds åldringscentrum Ålderdomshem Dgverksmhet Servicecentrl 1 På Gustfsgård uppskttr mn följnde sker: invånres välmående ett gott liv ktivt smrbete med de nhörig kompetens i gerontologisk vård personlens

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

INNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3

INNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 INNEHALL 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 DATORER Allmänt Digitl dtorer Orgnistion Ordmm Minnesenheten Aritmetisk enheten Styrenheten In/utenheten Avbrott Spräk och proglmm

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Relibility nlysis in engineering pplictions Etremvärdesfördelningr Mimum och minimum Structurl Engineering - Lund University 1 Etremvärdesfördelningr Vrible lod, q Mvärdet under referensperioden Q 1 Q

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

FAFF30 2013-03-21. Johan Mauritsson 1. Optiska system - optiska instrument Vetenskapsteori. Våglära och optik. Optiska system - optiska instrument

FAFF30 2013-03-21. Johan Mauritsson 1. Optiska system - optiska instrument Vetenskapsteori. Våglära och optik. Optiska system - optiska instrument Våglär oc optik Optisk system - optisk instrument Vetenskpsteori FAFF3 JOHAN MAURITSSON 2 Optisk system - optisk instrument Men örst Quiz Ögt Kmern Luppen Vinkelörstoring Mikroskopet Kikren Bländre oc

Läs mer

8-4 Ekvationer. Namn:..

8-4 Ekvationer. Namn:.. 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar

Läs mer

Design since 1890. www.vjsince1890.com facebook.com/vjsince1890

Design since 1890. www.vjsince1890.com facebook.com/vjsince1890 Degn nce 1890 wwwvjnce1890com fcebookcom/vjnce1890 Tck tll ll fotogrfer: Rckrd Thoron Angelc Engtröm VJ nce 1890 Ktrn Mäknen 102 62 Stockholm Mthld Svenon Phone: +46 8-720 09 20 Chrlotte Luterbch Ann Moln

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar

Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

Tavelpresentation grupp 5E

Tavelpresentation grupp 5E Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Föreläsning 7b. 3329 Längdskalan är L = 2 3

Föreläsning 7b. 3329 Längdskalan är L = 2 3 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

Världskrigen. Talmanus

Världskrigen. Talmanus Världskrigen I början av 1900-talet var det två stora krig, första och andra världskriget. Många barn hade det mycket svårt under krigen. Men de som krigade tyckte inte att de hade något ansvar för barnen

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

StyleView Scanner Shelf

StyleView Scanner Shelf StyleView Scnner Shelf User's Guide Mximl vikt: 2 ls ( kg) SV-vgn & Huvud-enhet Alterntiv - LCD-vgnr Alterntiv 2 - Lptop-vgnr Alterntiv 3 - Väggspår Alterntiv 4 - Bksid v SV-vgn 3 6 7 Reduce Reuse Recycle

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

RAPPORT. Kontroll av dricksvattenanläggningar 2009/2010. Tillsynsprojekt, Miljösamverkan Östergötland. DRICKSVATTEN

RAPPORT. Kontroll av dricksvattenanläggningar 2009/2010. Tillsynsprojekt, Miljösamverkan Östergötland. DRICKSVATTEN DRICKSVTTEN RPPORT Kontroll v dricsvttennläggningr 2009/2010. Tillsynsprojet, Miljösmvern Östergötlnd. Bgrund Ett behov v ompetensutvecling och smsyn vid ontroll v dricsvttennläggningr hr påtlts v flertlet

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Totalt finns det alltså 20 individer i denna population. Hälften, dvs 50%, av dem är svarta.

Totalt finns det alltså 20 individer i denna population. Hälften, dvs 50%, av dem är svarta. EVOLUTION Tänk dig att det på en liten ö i skärgården finns 10 st honor av den trevliga insekten långvingad muslus. Fem av dessa är gula med svarta fläckar och fem är helsvarta. Det är samma art, bara

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Det första steget blir att titta i Svensk MeSH för att se om vi kan hitta några bra engelska termer att ha med oss på sökresan.

Det första steget blir att titta i Svensk MeSH för att se om vi kan hitta några bra engelska termer att ha med oss på sökresan. Sökexempel - Hälsovägledare Hälsovägledning med inriktning mot olika folkhälsoproblem som t ex rökning, tips på hur man går tillväga för att göra en datasökning och hur man även kontrollerar om artiklarna

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd. H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen

Läs mer

Nr 3/4 20 PYSSEL! LÄSARFOTON. Så hjälper du igelkotten

Nr 3/4 20 PYSSEL! LÄSARFOTON. Så hjälper du igelkotten N KLUBBE 13 Nr 3/4 20 PYSSEL! LÄSARFOTON Så hjälper du igelkotten i vinter 1 Hej! u är den tiden på året N då djuren förbereder sig för den kll vintern. Mång fåglr flyger långt långt bort till vrmre länder.

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna uppdrg: mtte Gunnr Kryger ndres Hernvld Hns Perssn Len Zetterqvist Mttespnrn ISN 978-9-7-0- ndres Hernvld, Gunnr Kryger, Hns Perssn, Len Zetterqvist ch Liber re d k t i n Mirvi Unge Thrsén, Mri Österlund

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång

Hjälpreda. Lathunden 1. Dimensionering Virkeskvaliteter Fuktkvotsklasser Träskydd Virkessortiment Limträsortiment Tabeller. Lathunden Virkesåtgång Hjälpred Lthunden Virkesåtgång Dimensionering Virkeskvliteter Fuktkvotsklsser Träskydd Virkessortiment Limträsortiment Teller 10 1 2 3 4 5 6 7 8 9 11 12 13 14 Lthunden 1 Lthunden 2 Sommrhus Tjjkovski,

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer