Exponentiella förändringar

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Exponentiella förändringar"

Transkript

1 Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt i mtten, återkommer vi till senre. Funktioner v tyen y = 2 eller y = 000,08, där är eonent, klls eonentilfunktioner. Denn funktionsty är vnlig när mn vill eskriv förändringsförlo där en förändring el tiden estår v en konstnt rocentsts. Ett eemel å dett är kitltillvät å ett srkonto. Allmänt kn en eonentilfunktion skrivs å formen y = C där C oc är reell tl oc > 0. (Ilnd för mn in ytterligre en konstnt, oc skriver k y = C Beroende å :s värde, får grfen olik utseende, vilket frmgår v ilden. Smtlig vildde funktioner r C-värdet, vilket inneär tt de skär y-eln i unkten (0;) Lägg märke till tt > resulterr i en vände (y-värdet ökr ständigt) funktion, medn 0<< resulterr i en vtgnde funktion. Eonentilfunktioner kommer l.. till nvändning vid rolem liknnde dett: Du sätter in 5000 kr å ett nkkonto. Räntn är 4 %. Hur mycket r du å kontot efter 0 år. Svret fås med jäl v följnde eräkning. 5000,04 0 = 740 kr. Vill mn sedn t red å när kitlet vuit till 0000 kronor måste mn kunn lös ekvtionen 5000,04 = 0000, där vänstr ledet är en eonentilfunktion. Mn kn lös ekvtionen grfiskt, men för tt lös ekvtionen lgeriskt, krävs ytterligre kunsk om logritmer. (Bendls längre frm).

2 Eonentilfunktionens derivt Det är knske lite komlicert tt komm frm till deriveringsregler för eonentilfunktionen. Det är då r tt komm iåg, tt det mång gånger är mycket svårre tt komm frm till en regel, än tt sen tilläm dem. Derivtn v f( ) = 2 Om mn ärleder derivtn för eonentilfunktionen f( ) = 2 genom tt teckn ändringskvoten f( + ) f( ) kommer mn efter någr steg frm till tt ändringskvoten är lik med 2 2 Uttrycket 2 kn inte förenkls. Om mn undersöker vd som änder med dett uttryck då 0, visr det sig, tt uttrycket närmr sig ett estämt värde 0, Det etyder lltså tt funktionen f( ) = 2 r derivtn f ( ) 0, Lägg märke till tt också derivtn inneåller fktorn 2, vilket inneär tt även derivtn är en eonentilfunktion. Det end som skiljer f( ) oc f ( ) är konstnten 0,693. Om du ritr funktionen f( ) = 2 å grfräknren, oc därefter ritr även funktionen f ( ) 0,693 2 i smm koordintsystem, ser du tt kurvorn r smm form, men derivtns grf ligger lite under själv funktionens grf. Derivtn v f( ) = I eemlet ovn estämdes derivtn för en viss eonentilfunktion f( ) = 2, men sk vi komm frm till en deriveringsregel för eonentilfunktioner, måste regeln nturligtvis vr generell, dvs den måste gäll för ll eonentilfunktioner. Vi utgår därför från eonentilfunktionen f( ) =, oc tecknr ändringskvoten för den. I nlogi med eemlet ovn lir ändringskvoten. Om mn undersöker vd som änder med dett uttryck, för någr olik värden å, när 0 utäcker mn tt för vrje värde å närmr sig uttrycket ett estämt värde då 0. Om vi kllr det värde, som uttrycket närmr sig då 0, för k r vi kommit frm till följnde. Eonentilfunktionen f( ) = r derivtn f ( ) = k. Derivtn v f( ) = C åt Vi generliserr uttrycket för eonentilfunktionen ytterligre, genom tt inför ännu en kostnt C, oc skriver eonentilfunktionen så är: f( ) = C. Denn konstnt kommer inte tt våll oss något ekymmer. Allmänt gäller tt funktionen C f( ) r derivtn C f ( ) säg konstnten med. Det etyder tt funktionen f( ) = C r derivtn f ( ). Vid derivering följer så tt Derivtn v f( ) = e Betrkt återigen eonentilfunktionen f( ) =, som r derivtn f ( ) = k. (Vi lämnr konstnten C därän så länge). Enligt ovn är k lik med det värde som 2

3 uttrycket närmr sig då 0 oc därför skulle det vr r om k fick ett enkelt värde då 0 vi vill därför tt uttrycket då 0 villkor sätter vi uttrycket lik med dvs =. Om mn löser ut ur dett uttryck får mn = ( + ) Om vi nu låter 0 går uttrycket mtemtiken tt det r fått ett eget nmn. Tlet klls för e.. Mn vill ju tt en deriveringsregel sk vr så enkel som möjligt,. Ett mycket enkelt värde är, oc. För tt t red å vilket värde å som ufyller dett ( + ) 2, Dett tl 2,782...är så viktigt i Alltså: Om vi i eonentilfunktionen f( ) =, låter få värdet 2,782...dvs e får vi funktionen f( ) = e. Denn funktion r derivtn f ( ) = e eller enklre f ( ) = e Genom tt inför tlet e som förändringsfktor i eonentilfunktionen r vi lltså ittt en eonentilfunktion vrs derivt är identisk med funktionen!!! Logritmer Vårt tlsystem är sert å tlet 0, oc därför är det viktigt tt kunn skriv tl som otenser med sen 0. Definitionen v tio-logritm lyder: Med tio-logritmen (lg) för ett ositivt tl, mens eonenten, när tlet skrivs som en otens med sen 0. Med mtemtisk symoler skrivs dett lg = 0 Eftersom tlet e är mycket viktigt i mtemtiken, eöver vi även kunn skriv tl som otenser med sen e. Vi inför därför ytterligre en ty v logritm, som klls den nturlig logritmen, oc som r eteckningen ln. Definitionen v den nturlig logritmen är elt nlog med definitionen v tiologritm: Med den nturlig logritmen (ln) för ett ositivt tl, mens eonenten, när tlet ln skrivs som en otens med sen e. Med mtemtisk symoler skrivs dett = e. Mn kn komletter definitionen v tiologritm med en mer mtemtisk definition enligt följnde: Vrje tl > 0 kn skrivs som en tiootens, 0, dvs = 0. Tlet klls logritmen för, vilket skrivs lg. Smndet kn då skrivs lg =. Dess två smnd = 0 () lg = (2) kn också formulers å ett nnt sätt. Om vi i först smndet ersätter med lg kn vi skriv I det ndr smndet ersätter vi med 0 oc skriver lg0 lg = 0 (3) (Smm som def. ovn) = (4) De två först smnden är själv definitionen v logritm, oc de två ndr är en direkt följd v definitionen. 3

4 Om vi gör å smm sätt med den nturlig logritmen får vi: Vrje tl > 0 kn skrivs som en otens med tlet e som s, e, dvs e nturlig logritmen för, vilket skrivs ln. Smndet kn då skrivs ln =. = () Dess två smnd e ln = (2) kn också formulers å ett nnt sätt. ln Om vi i först smndet ersätter med ln kn vi skriv = e (3) I det ndr smndet ersätter vi med e oc skriver ln e = (4) =. Tlet klls den Funktionen f( ) = ln Eftersom den nturlig logritmen kn estämms för ll tl > 0, är ln en funktion med definitionsmängden > 0. = (igen) Derivtn v f( ) Vi r tidigre slgit fst tt eonentilfunktionen f( ) = r derivtn f ( ) = k. Vilket är smndet melln förändringsfktorn oc konstnten k? Det går tt vis, vilket jg or över, tt k = ln I uttrycket för funktionens derivt f ( ) = k kn vi lltså ersätt k med ln oc får då f ( ) = ln. Funktionen f( ) = r lltså derivtn f ( ) = ln. Derivtn v f( ) = C (igen) Om vi även är lägger till konstnten C får vi funktionen f( ) = C. Eftersom enligt tidigre funktionen C f( ) r derivtn C f ( ), r funktionen f( ) = C derivtn f ( ) = C ln k Derivtn v f( ) = e (ln ) Funktionen f( ) = kn enligt definitionen v den nturlig logritmen skrivs f( ) e ln sin tur kn skrivs f( ) = med jäl v en v otenslgrn. Eftersom funktionen f( ) ln derivtn f ( ) = ln måste även funktionen f( ) f ( ) = ln. Om vi i smnden (ln ) ln =, som i = r = (som är smm funktion) derivtn f( ) = = e = () (ln ) ln f ( ) = ln = ln = ln (2) ersätter ln med k får vi k f( ) = () k f ( ) = k (2) Därmed r vi utvidgt deriveringsregeln för eonentilfunktion med sen e till tt omftt även det fll då eonenten inneåller en konstnt k. 4

5 Derivtn v f( ) = C e Som tidigre lägger vi till konstnten C oc får då k k Funktionen f( ) = C r derivtn f ( ) k Smmnfttning Funktionen f( ) = C r derivtn f ( ) = C ln k Funktionen f( ) = C r derivtn f ( ) k Logritmlgrn För åde tio-logritmer oc nturlig logritmer kn mn ärled s.k. logritmlgr. Jg går är inte närmre in å ärledningen, men logritmlgrn ser ut så är. Tio-logritmen Nturlig logritmen lg( y) = lg + lg y () ln( y) = ln + ln y () lg = lg lg y (2) ln ln ln y y y = (2) lg = lg (3) ln = ln (3) = lt ln ln Anm: Vid rolemlösning kommer oft den tredje lgen, lg lg =, till nvändning i smnd med rolem som leder till s.k. eonentilekvtioner. En eonentilekvtion är en ekvtion där den oeknt är eonent. Vilken v de två logritmern mn nvänder när mn löser en eonentilekvtion selr ingen roll. 5

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Råd och hjälpmedel vid teledokumentation

Råd och hjälpmedel vid teledokumentation Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

MEDIA PRO. Introduktion BYGG DIN EGEN PC

MEDIA PRO. Introduktion BYGG DIN EGEN PC BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

SLING MONTERINGS- OCH BRUKSANVISNING

SLING MONTERINGS- OCH BRUKSANVISNING SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

Studentens Ultimata Guide till Cost-Benefit-Analys

Studentens Ultimata Guide till Cost-Benefit-Analys CERE Working Pper, 2015:15 Studentens Ultimt Guide till Cost-Benefit-Anlys Per-Olov Johnsson *, Hndelshögskoln i Stockholm Krl-Gustf Löfgren *, Umeå Universitet * Centre for Environmentl nd Resource Economics

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck > VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET

Läs mer

Det energieffektiva kylbatteriet

Det energieffektiva kylbatteriet Croline Hglund, Civ.ing. SP Sveriges Provnings- och Forskningsinstitut, Energiteknik, Borås, croline.hglund@sp.se Per Fhlén, Prof. Inst. för Instlltionsteknik, CTH, Göteorg, per.fhlen@hvc.chers.se Det

Läs mer

Lösningsförslag till finaltävlingen den 19 november 2005

Lösningsförslag till finaltävlingen den 19 november 2005 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer 2005 1 Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

Rapport gällande LUS- resultat under höstterminen 2011

Rapport gällande LUS- resultat under höstterminen 2011 Rpport gällnde LUS- resultt under höstterminen 2011 Kommunen hr sedn mång år tillk eslutt tt ll låg- och mellnstdieskolor sk gör ett läsutvecklingstest (LUS) på vrje rn en till två gånger per termin. Dett

Läs mer

Finns det en naturmetod i matematikundervisningen?

Finns det en naturmetod i matematikundervisningen? Finns det en nturmetod i mtemtikundervisningen? Bengt Ulin är lektor vid högskoln för lärrutildning i Stockholm och mtemtiklärre vid Kristofferskoln i Bromm. Här ger hn motiv för och förslg till innehåll

Läs mer

Skogstorp i framtiden

Skogstorp i framtiden I SKOGSTORP www.skogstorp.om/soildemokrtern Skogstorp i frmtiden Redovisning v enkät genomförd under perioden Novemer- Deemer 2005. 1. Tyker Du liksom fler v oss tt det ehövs yggs en förifrt utnför skogstorp?

Läs mer

1. Tvätta händerna och abborrens yttre samt använd rent material. Lägg abborren på skärbrädan framför dig. Studera dess utseende.

1. Tvätta händerna och abborrens yttre samt använd rent material. Lägg abborren på skärbrädan framför dig. Studera dess utseende. 1 st färsk orre - Denn kn du köp i en livsmedelsutik som hr fiskdisk. Koll så tt den inte livit rensd (men hr de oftst inte livit). Aorren ör helst väg 250 g eller mer, nnrs kn det li lite pilligt. 1 st

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna

uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna uppdrg: mtte Gunnr Kryger ndres Hernvld Hns Perssn Len Zetterqvist Mttespnrn ISN 978-9-7-0- ndres Hernvld, Gunnr Kryger, Hns Perssn, Len Zetterqvist ch Liber re d k t i n Mirvi Unge Thrsén, Mri Österlund

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Facit - Tänk och Räkna 4a

Facit - Tänk och Räkna 4a Vår tl Fit Tänk oh Räkn 9 9 69 996, 997, 998 998, 999, 000 6 6699, 6700, 670, 670, 670, 670 67 m, 67 m, 67 m 800 m, 900 m, 000 m 900 m, 90 m, 90 m NAF 06 7 9 d 6 8 e 7 76 f 8 8 d 6 e 0 f 8 9 7 8 88 d 80

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

GENETIK. en introduktion av Ingela Carlén 1988 och 1999

GENETIK. en introduktion av Ingela Carlén 1988 och 1999 GENETIK en introduktion v Ingel Crlén 1988 och 1999 Innehållsförteckning Innehåll Sidn Förord 3 Kromosomer 4 DN 4 Muttioner 5 Gregor Mendel 5 Mendels metod 6 Mendelklyvning (monohybrid) 6 Dihybrid klyvning

Läs mer

KLARA Manual för kemikalieregistrerare

KLARA Manual för kemikalieregistrerare KLARA Mnul för kemiklieregistrerre Version 16.4 (2015-05-08) Utrbetd v Anders Thorén och Björn Orheim Först utgåv 2002-11-01 Innehåll Introduktion 3 Vd är KLARA? 3 Systemkrv och övrig informtion 3 Vd säger

Läs mer

Programmeringsguide ipfg 1.6

Programmeringsguide ipfg 1.6 Progrmmeringsguide ipfg 1.6 Progrmmeringsklr i-ört pprter (CIC, knl, fullonh) Progrmmeringsklr kom-ört pprter CS-44 Phonk-version Progrmmeringsklr miropprter CS-44 Phonk-version 1 2 1 2 1 2 ipfg 1.6 stndrd

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Gödselmedel i jordbruket

Gödselmedel i jordbruket Sttistisk centrlbyrån SCBDOK 3.2 (5) Gödselmedel i jordbruket 202/203 MI00 Inneåll 0 Allmänn uppgifter... 2 0. Ämnesområde... 2 0.2 Sttistikområde... 2 0.3 SOS-klssificering... 2 0.4 Sttistiknsvrig...

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Naturvärdesinventering i området Talldungen, Häggvägen, Ånestad, Linköping

Naturvärdesinventering i området Talldungen, Häggvägen, Ånestad, Linköping Nturvärdesinventering i området Tlldungen, Häggvägen, Ånestd, Linköping 9 septemer 2011 Nturvärdesinventering i området Tlldungen, Häggvägen, Ånestd, Linköping Inledning Nrdus - Ekologisk konsult hr fått

Läs mer

upp skannern och kontrollera komponenterna Mikro-USB-kabel SD-kort Snabbguide DVD-ROM

upp skannern och kontrollera komponenterna Mikro-USB-kabel SD-kort Snabbguide DVD-ROM Snguide DSmoile 820W Börj här DSmoile 820W DSmoile 920DW Tck för tt du hr vlt Brother! Vi värderr dig som kund. Innn du kn nvänd mskinen sk du läs den här Snguiden så tt sknnern ställs in och instllers

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom

Läs mer

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD

KAPITEL 1.10 BESTÄMMELSER OM TRANSPORTSKYDD 2 112/213 KAPITEL 1.1 BESTÄMMELSER OM TRANSPORTSKYDD Bestämmelser om trnsportskydd och förpliktelser i smnd med trnsport v frlig ämnen finns i TFÄ-lgen smt i 6, 8 5 mom., 15 1 mom. 5 och 6 punkten och

Läs mer

En ny aktiv fluorformel i Sverige

En ny aktiv fluorformel i Sverige En ny ktiv fluorformel i Sverige Fördelr målinriktd fluor på tndytorn Ger ökd fluorkonentrtion i oh omkring tnden Underlättr reminerlisering v initil kriesskdor Ökr tänderns motståndskrft mot syrngrepp

Läs mer

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv

Läs mer

Elektromagnetisk bromsning förbättrar stålkvaliteten vid stränggjutning

Elektromagnetisk bromsning förbättrar stålkvaliteten vid stränggjutning Elektromgnetisk romsning förättrr stålkvliteten vid stränggjutning Elektromgnetisk romsning v stålflödet i kokillen i stränggjutningsmskiner förättrr kvliteten hos det gjutn stålet genom tt mängden icke-metllisk

Läs mer

I, II, III, IV, V, VI, VII, VIII, IX, X, XI...

I, II, III, IV, V, VI, VII, VIII, IX, X, XI... Olik typer v tl Vi sk se hur vi utgående från de nturlig tlen kn konstruer de hel tlen, de rtionell tlen och de reell tlen och diskuter räknereglern som de uppfyller. Nturlig tl Vi påminner lite om nturlig

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar

Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk

Läs mer

Under årens lopp har många lärare och forskare beskrivit hur nybörjarstudenterna

Under årens lopp har många lärare och forskare beskrivit hur nybörjarstudenterna B. Grevholm, J. Lundqvist, L-E. Persson & P. Wll Ett mentorprojekt för gymnsieelever i Luleå Hur får vi fler gymnsieelever intresserde v tt örj läs mtemtik vid universitetet? Den frågn hr mång mtemtiklärre

Läs mer

EasyMP Multi PC Projection-bruksanvisning

EasyMP Multi PC Projection-bruksanvisning EsyMP Multi PC Projection-bruksnvisning Innehåll 2 Om EsyMP Multi PC Projection Olik typer v möten med EsyMP Multi PC Projection... 5 Håll möten och nvänd fler bilder...5 Håll fjärrmöten över ett nätverk...

Läs mer

14 Trippelintegraler integration av funktioner av tre variabler

14 Trippelintegraler integration av funktioner av tre variabler Nr, 8 pril -5, Ameli Trippelintegrler integrtion v funktioner v tre vribler. Areor och volmer.. Are som enkelintegrl och som dubbelintegrl Som beknt kn enkelintegrlen R b fx)dx kn tolks som ren under fx)

Läs mer

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater. Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär

Läs mer

Uppföljning av anläggningsprojekt

Uppföljning av anläggningsprojekt 40% 5% 0% 5% 0% 15% 10% 5% 0% Pålr 0, 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1, Uppföljning v nläggningsprojekt Oviktt -Beräkningsstöd i nudsproessen Viktt Vlues in 10^ -7,500,000,500,000 1,500 1,000 0,500 Försäljningspris

Läs mer

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik 38/Thoms Munther IDE-sektionen/Högskoln i Hlmstd Formelsmling Reglerteknik Smbnd melln stegsvr och överföringsfunktion ( insignlen u är nedn ett steg med mplitud = som pplicers vid t=, där är llmänt y/

Läs mer

Nystartsjobb /särskilt nystartsjobb

Nystartsjobb /särskilt nystartsjobb Arbetsförmedlingens fktbld. Arbetsgivre. 2015-04. Nystrtsjobb /särskilt nystrtsjobb Du kn få ekonomisk ersättning om du nställer en person som hr vrit utn rbete en längre tid eller är ny i Sverige. Stödet

Läs mer

Björnen och sköldpaddan Analys av en matematiskt paradoks

Björnen och sköldpaddan Analys av en matematiskt paradoks Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Föreläsningsanteckningar i analys I januari 2009

Föreläsningsanteckningar i analys I januari 2009 Föreläsningsnteckningr i nlys I jnuri 009 Pvo Slminen Görn Högnäs bsert på Protter-Morrey: A First Course in Rel Anlysis Innehåll 1 Introduktion 5 1.1 De reell tlen................................... 5

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

Mejl från M E : Hej Lars!

Mejl från M E : Hej Lars! Mejl från M E 001-09-5: Hej Lrs! MVH M E Svr: Hej M! Jg sk försök förklr uppgiften, som jg förmodr står i något inlednde vsnitt till kpitlet om geometrisk summor. I denn uppgift krävs dock ingen kunskp

Läs mer

TERRASSNYTT. Funderingar från en terrass

TERRASSNYTT. Funderingar från en terrass Informtionsbld för HSB Brf Terrssen i Ulnds Väsby TERRASSNYTT Nr 2 Aril 2014 I dett nummer bl : Nyinflyttrträff... sid 2 Målning, rboler och UC-byte... sid 2 Trfiken frmför hus 1... sid 2 Fsighetsskötsel,

Läs mer

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de

Läs mer

C100-LED Duschhörn med LED-Belysning

C100-LED Duschhörn med LED-Belysning SVENSKA C100-LE uschhörn med LE-elysning COPYRIGHT CAINEX A ARUMSPROUKTER, LJUNGY, SWEEN MONTERINGSANVISNING Totl höjd: 1900 mm 6 mm härdt gls A 900 800 700 884 784 684 C 900 800 800 884 784 784 39 8 Prod.#

Läs mer

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen 2016-05-23 Sid 1/2 Tjänsteskrivelse Dnr: LKS 2016-235 Kommunstyrelseförvltningen Leif Schöndell, 0523-61 31 01 leif.schondell@lysekil.se Pln för lik rättigheter och möjligheter i rbetslivet uppdrg till

Läs mer

Nystartsjobb /särskilt nystartsjobb

Nystartsjobb /särskilt nystartsjobb Arbetsförmedlingens fktbld. Arbetsgivre. 2015-08. Nystrtsjobb /särskilt nystrtsjobb Du kn få ekonomisk ersättning om du nställer en person som hr vrit utn rbete en längre tid eller är ny i Sverige. Stödet

Läs mer