Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)"

Transkript

1 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given punkt är konstnt.. Cirkelns ekvtion Cirkeln med centrum i (,) och rdien = hr ekvtionen ( ) +( ) = Cirkelns ekvtion på prmeterform: = p + cos t = q + sin t, där 0 t π (*) Anmärkning : Med hjälp v "trigonometrisk ettn " ser vi tt punkter definierde med (*) uppfller p q + = cos t + sin t = dvs ( p) + ( q) = som är ekvtionen för cirkeln med rdien och centrum i punkten (p,q). Anmärkning : Cirkelns ekvtion definierr två eplicit funktioner ( och därmed två funktionskurvor) som vi får genom tt lös ut ur ovnstående ekvtion: ( q) = ( p) = q ± ( p ) Övre hlvcirkeln ges v = q + ( p) medn = q ( p) är ekvtionen för nedre hlvn Härledning v cirkelns ekvtion: Låt P(,) vr en punkt på cirkeln med centrum i (,) och rdien =. Eftersom vståndet melln P och C är lik med hr vi: ( p) + ( q) =. Om vi kvdrerr åd leden får vi ( = p) + ( q). v 3

2 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor Anmärkning 3. Endst en punkt(0,0) stisfier ekvtionen + =0 Anmärkning. Ingen punkt stisfierr ekvtionen + = De inre punkter (med rndpunkter) uppfller villkoret ( ) +( ) För de ttre punkter (med rndpunkter) gäller ( ) +( ) Uppgift. Rit cirkeln + + =. Lösning: Vi kvdrtkompletterr + + = (+) +( ) = (+) +( ) = 9 Om vi jämför med cirkelns ekvtionen ( ) +( ) =, ser vi tt =, = h = 9 eller =, = h = 3 Alltså C(-,) är centrum och =3 är cirkelns rdie. =3 C(-,,) - O Uppgift. Rit följnde punktmängd i -plnet v 3

3 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor A= {(,) Svr: R : + 9 } ===========================================================. ELLIPS Definition. En ellips är mängden v de punkter i plnet vrs vstånd till två givn punkter, rännpunktern, hr en konstnt summ. Ellipsen med centrum i origo (0,0) och hlvlrn, hr ekvtionen + =. Om = 0 får vi = ±. Om = 0 får vi = ±. Aren v en ellips vrs hlvlr är och är A = π. Om F (,0) och F (,0) är ellipsens rännpunkter då gäller c c = c 3 v 3

4 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor Anmärkning 5: Ellipsen med centrum i origo, + =, kn nges med två ekvtioner på prmeter form: = cos t = sin t, där 0 t π (**) ( Med hjälp v "trigonometrisk ettn " ser vi tt + = cos t + sin t = dvs punkter som uppfller (**) stisfierr ellipsens ekvtion + = ) Anmärkning 6: Ekvtionen + = definierr två eplicit funktioner: = ± ( + tecken för övre hlvn ) Härledning v ellipsens ekvtion: Vi etrktr en ellips som hr rännpunktern F ( c, 0) och F (c, 0) som estår v de punkter vrs smmnlgd vstånd till två rännpunktern, hr en konstnt summ d + d =. Låt P(,) vr en punkt på ellipsen. Från d + d = hr vi ( + c) + + ( c) + = Vi flttr en rot till den vänstr sidn ( + c) + = ( c) + och kvdrerr åd sidor : ( + c) + = ( c) + + ( c) + Efter förenkling hr vi ( c) + = c Vi delr med och igen kvdrerr åd leden ( för tt eliminer roten) och därefter förenklr ekvtionen : v 3

5 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor + [( c) + ] = c c + [ c + c + ] = c c ( c + c + = c + c c ) + Vi inför eteckningen + = Om vi delr med + =. = ( = c ) c och får ellipsens ekvtion hr vi ellipsens ekvtion på formen Därmed hr vi härlett ellipsens ekvtion + = Anmärkning 7: Ett sätt tt få ekvtion för en ellips är tt i cirkelns ekvtion + = gör vrielte =/, =/ (med ndr ord ändrr vi skln på respektive -eln). Vi får + =. Anmärkning 8: Om ellipsens centrum ligger i punkten C(p,q) då hr ellipsen följnde () + () =. Smm ellipsen kn skrivs på prmeterform: = p + cos t = q + sin t, där 0 t π (***) p q ( Med hjälp v "trigonometrisk ettn " ser vi tt + = cos t + sin t = dvs ( p) ( q) punkter som uppfller (***) stisfierr ellipsens ekvtion + = ) Anmärkning 9: Endst en punkt(0,0) stisfierr ekvtionen Anmärkning 0: Ingen punkt stisfierr ekvtionen + + =. = Uppgift. En ellips hr ( den horisontell) hlveln = 5 och rännpunkter F ( 3,0) F (3,0). Bestäms ellipsens ekvtion. och 5 v 3

6 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor Lösning: Från smndet = c hr vi = 5 9 = 6. Ellipsens ekvtion + = lir då + = 5 6 Svr: + = 5 6 Uppgift 3. Rit elipsen vrs ekvtion är + = Lösning: För tt skriv ellipsen på formen + = delr vi med ekvtionen + 3 = och får 3 + = som vi kn skriv på följnde sätt + = / 3 Om vi jämför med + = får vi: = = och = / 3 = / 3 Alltså hr ellipsen hlvlrn = och = / Uppgift. Bestäm tngenten till elipsen vrs ekvtion är + = 3 i punkten P= (, ) där >0. Lösning: Vi sustituerr = i ellipsens ekvtion: + = 3 = = ±. Eftersom, enligt ntgnde >0 tr vi =. Vi deriverr åd leden i implicit definierde funktionen + = 3 och får 6 v 3

7 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor + = 0 =. I punkten P= (,) hr vi ( P) =. Tngentens ekvtion lir: ( ) = ( ) eller efter förenkling + = 3. Svr: + = 3 Uppgift 5. Vis tt ellipsen + = hr ren A = π. Lösning: Från + = får vi två eplicit funktioner = ± = ±. Vi estämmer ren v fjärde delen v ellipsen som ligger i först kvdrnten. A = d = = π / 0 π / 0 0 sin cosv cosv dv v cosv dv π Sustitutionen = sin v där 0 v ger d = cosvdv Gränser: = 0 sin v = 0 v = 0 π = sin v = sin v = v = π / π / π + cosv sin(v) = cos v dv = dv = [ v + ] 0 0 sin( π ) sin(0) = ( / ) (0 ) = π + + π π =. / 0 [( / + 0) (0 + 0) ] Från A π = hr vi A = π (vilket skulle eviss). 7 v 3

8 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor Uppgift 6. Rit följnde punktmängd i -plnet ) M = {(, ) R : + } Svr: Området egränss v ellipsen + =. Från = och = får vi hlvlrn = och =. Uppgift 7. Rit följnde punktmängder i -plnet ) M = {(, ) R : + } ) M = {(, ) R : + < } c) M 3 = {(, ) R : + = } d) M = {(, ) R : +, > 0} e) M 5 = {(, ) R : + <, 0} f) M 6 = {(, ) R : +, 0} Svr: ) ) Rndpunkter tillhör inte mängden M 8 v 3

9 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor c) d) B o C A e) B o C f) B o C A A ================================================================ 3.HYPERBEL Definition. En hperel är mängden v de punkter i plnet vrs vstånd till två givn punkter, rännpunkter hr en konstnt skillnd. ( Ekvtionen för en hperel härleder vi på liknnde sätt som för en ellips.) Två oft förekomnde är följnde ekvtioner: = (hr skärningspunkter med -eln) och =. (hr skärningspunkter med -eln) Anmärkning : Ekvtionen = definierr två eplicit funktioner: = ± ( + tecken för övre hlvn ). Härv får vi definitionsmängden 0 dvs (, ] [, + ) och två sned smptoter enligt formlern: T e för = + och hr vi 9 v 3

10 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor k = limm f ( ) + = lim + = lim = n = lim( f ( ) k ) = lim = lim [ ]= lim + + = = lim == lim konstnt). + + = 0 ( nämnrenn går mot, täljren = Därmed är = + 0 en sned smptot till = + d då. På smm sätt får vi tt = är en vänster smptot till = + då. På liknnde sätt visr vi tt = + och = är sned smptoter ( vänster respektive höger) till nedre delen v hpereln. Om F ( c,0) och F ( e,0) är hperelns rännpunkter då gäller + = c Anmärkning. Ekvtionen = 0 k kn fktorisers och skrivs som ( )( + ) = 0. och därmed punkter som stisfierr ekvtionen ligger på två linjer 0 v 3

11 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor = 0 h + =0. Uppgift 8. Rit hpereln 8 =8. Lösning: För tt estämm och skriver vi ekvtionen på formen =. Vi delr ekvtionen 8 = 8 med 8 och får = = h =. Därför är = hperelns smptoter. Vi ritr smptoter och, med hjälp v en rektngel ( se ilden), skisserrr vi hpereln. ======= =========== =========== =========== ========== ========== =========. PARABLER Här är två oft förekomnde ekvtioner: = ++ Eempel 3. ( där 0 ) och = + + ( där 0 ) ======= =========== =========== =========== ========== ========= v 3

12 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor Definition. En prel är mängden v de punkter i plnet vrs vstånd till en given linje, strlinje (direktris) och en given punkt rännpunkt är lik. Anmärkning 3: Prelns verte, ( toppunkt) ligger i mitten v vinkelrät sträckn från rännpunkten till direktrisen. Den red linjen i figuren ovn är prelns strlinje, F etecknr rännpunkt (fokus) och V är prelns verte (toppunkt) Uppgift 9. Bestäm ekvtionen för den prel vrs vstånd till linjen är lik. = och punkten F (, 0) Lösning: Q(-,) P(,) (-,0) O F(,0) Låt P(,) vr en punkt på preln. Avståndet melln P och direktrisen ( strlinjen) är d = + medn vståndet melln P och rännpunkten är d = ( +. ) Från d = d + = ( ) + (kvdrer åd leden) v 3

13 Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor ( + ) = ( ) = + + = Svr: = Uppgift 8. Bestäm ekvtionen för den prel som hr rännpunkten F(,5 ) och verte V(.6). Lösning: Genom rännpunkten F(,5 ) och verte V(.6) går prelns smmetrilinje medn direktrisen (strlinjen) skär vinkelrät smmetrilinjen i den punkt D som uppfller krvet tt vståndet melln D och V är lik med vståndet melln V och F. Direktrisens ekvtion är därmed = 7. (Se figuren.) För en punkt P(,) på preln hr vi d = d ( 7 ) = ( ) + ( 5 (kvdrer åd leden) ) (7 ) = ( ) 9 + = = Svr: = = ( 5) v 3

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

Övningar till kapitel 1

Övningar till kapitel 1 Övningar till kapitel. Skissera för hand och/eller med Maple de delmängder av R som beskrivs av följande ekvationer och olikheter. a) > 0, >0 b) = +, 0, 0 c) = d) e) = f) >3 g)

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

============================================================

============================================================ H0009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Någr eemel me linjär ekvtioner oh ekvtioner som kn förenkls till linjär ekvtioner. Mn kn förenkl en ekvtion me hjäl v följne

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Övningsuppgifter till introduktionsföreläsningar i matematik

Övningsuppgifter till introduktionsföreläsningar i matematik Övningsuppgifter till introduktionsföreläsningar i matematik Detta är ett urval övningar på baskunskaper i matematik för repetition av några delar av gymnasiekurserna. En del övningar kan tyckas annorlunda

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

TATA42: Envariabelanalys 2 VT 2016

TATA42: Envariabelanalys 2 VT 2016 TATA4: Envribelnlys VT 6 Föreläsningsnteckningr John Thim, MAI L =? TATA4: Föreläsning Kurvlängd, re och volym John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15

Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15 Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

Sommarmatte. Matematiska Vetenskaper. 8 april 2009

Sommarmatte. Matematiska Vetenskaper. 8 april 2009 Innehåll Sommrmtte del Mtemtisk Vetenskper 8 pril 009 5 Ekvtioner och olikheter 5. Komple tl............ 5.. Algebrisk definition, imginär rötter....... 5.. Geometrisk representtion, polär koordinter...

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTOMAGNTM (TFYA48, 9FY321) 2012-05-30 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt

Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Om stationära flöden och Gauss sats i planet

Om stationära flöden och Gauss sats i planet Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Meknik 2008 05 20 Meknik för I, SG09, Lösningr till probletenten, 2008 05 20 Uppgift : En bo ed ssn och längden är i sin en ände onterd i en kulled på en vertikl vägg. I den ndr änden A är fäst två

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m tik Länktips: Mttecentrum.se Formelsmlingen.se Mtteoken.se Pluggkuten.se 4 Innehåll: Pluggtips Formelsmling Ntionell prov från tidigre

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

Matematisk Modellering Övning 1

Matematisk Modellering Övning 1 HH/IDE/BN Mtemtisk Modellering, Övning 0.5 0-0.5-0 4 0 4 Mtemtisk Modellering Övning Allmänt Övningsuppgiftern är eempel på uppgifter, eller delr v uppgifter, du kommer tt möt på tentmen. Undntg utgör

Läs mer

Svar och anvisningar till arbetsbladen

Svar och anvisningar till arbetsbladen Svar och anvisningar till arbetsbladen Repetitionsmaterial (Facit) Anders Källén Notera att detta är första versionen av svaren Både felräkningar och feltrck kan förekomma! Fingeröfningar Övning,, c) 0,

Läs mer

Lösningsförslag till finaltävlingen den 19 november 2005

Lösningsförslag till finaltävlingen den 19 november 2005 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer 2005 1 Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 EKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och ioloi Gli Pozin enten i eknik FY6 illåtn Hjälpedel: Physics Hndbook eller efy utn en nteckninr, vprorerd räknedos enlit IFM:s reler. Forelslinen

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 41, 1958 Årgång 41, 1958 Första häftet 143. I en given cirkel är inskriven en triangel ABC, i vilken b + c = ma, där m är ett givet tal > 1. Sök enveloppen för linjen BC, då hörnet A är

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?...................... 5.2 Definitioner, stser och bevis................... 5.3 Mängder...............................

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer