V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

Storlek: px
Starta visningen från sidan:

Download "V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]."

Transkript

1 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ±. V. Funktionen f () är egränsd i intervllet [,]. Definition. Om minst en v ovnstående villkor V, V inte är uppfylld säger vi tt integrlen f ( ) d är en generliserd integrl. Viktig generliserde integrler. d konvergerr om och endst om p > p. d konvergerr om och endst om p < p. Generliserde integrler med oändligt integrtionsintervll: f ( ) d, f ( ) d och f ( ) d. * Vi definierr När vi eräknr f ( ) d med hjälp v gränsvärdet lim f ( ) d. lim f ( ) d kn tre fll förekomm: i) lim f ( ) d A, där A är ett reellt tl. I dett fll säger vi tt integrlen konvergerr, hr värdet A, och skriver f ( ) d A ii) iii) lim f ( ) d (eller ). Vi säger tt integrlen divergerr. lim f ( ) d eisterr inte. Vi säger tt integrlen divergerr. v

2 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler ** På liknnde sätt definiers f ( ) d smt konvergensen / divergensen v denn integrl. *** Vi säger tt f ( ) d konvergerr om och endst om åde f ( ) d konvergerr. Stser om konvergent integrler: Jämförelsestsen för icke-negtiv integrnder. Om f ( ) g( ) för ll då gäller och f ( ) d ( ) d g( d och därför f ) f ( ) d g ( ) d. Följnde sts nvänder vi oft för tt evis tt en generliserde integrl konvergerr/ divergerr utn tt eräkn integrlens värde: Sts. Jämförelsestsen för positiv integrnden. i) Låt f ( ) g( ) för ll. Om den generliserde integrlen g ( ) d är konvergent så är f ( ) d också konvergent. ii) Låt g( ) f ( ) för ll. Om den generliserde integrlen g ( ) d är divergent så är f ( ) d också divergent. Sts. ( Andr jämförelsestsen) Låt f () och g() två egränsde, icke-negtiv funktioner för. f ( ) Om lim A > g( ) ( A är ett reellt tl > ). Då är integrler f ( ) d och g ( ) d ntingen åd konvergent eller åd divergent. v

3 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Liknnde stser gäller för generliserde integrlen intervllet [,]. f ( ) d om funktionen är oegränsd i Sts. Jämförelsestsen för positiv integrnden. Låt f ( ) g( ) för ll i intervllet (, ) i) Om den generliserde integrlen g ( ) d är konvergent så är konvergent. f ( ) d också ii) Om den generliserde integrlen f ( ) d är divergent så är g ( ) d också divergent. Sts. ( Andr jämförelsestsen) Ant tt f () och g() är egränsde i intervllet [c,] där < c medn f () och g () då. f ( ) Om lim A > g( ) ( A är ett reellt tl > ). Då är integrler f ( ) d och g ( ) d ntingen åd konvergent eller åd divergent. ÖVNINGAR: Uppgift. Undersök om följnde integrler är konvergent och nge i så fll ders värden. ) e d ) d c) d d) cos( ) d ) e e e d. v

4 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler e lim Integrlen konvergerr och hr värdet e d. ) d då Integrlen konvergerr och hr värdet d. c) d 8 8 d lim Integrlen divergerr. d) sin() sin( ) cos() d sin( ) lim eisterr inte. Därmed integrlen cos( ) d divergerr. Uppgift. Undersök om följnde integrler är konvergent och nge i så fll ders värden. ). d Lösning. ) d, c).8 d ).. d.... då Integrlen är konvergent och hr värdet d.. v

5 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler d ln ln( ) ln ) [ ] då Integrlen d är divergent c).8 d.... [ ] då integrlen divergerr. Anmärkning. Mn kn generliser ovnstående uppgift till följnde viktig resultt (som vi oft nvänder i smnd med nednstående jämförelsests) konvergerr om p > d p divergerr om p Om funktionen f ( ) för då är ren v det oändlig området R {(, y) :, y < f ( )} lik med f ( ) d. Uppgift. eräkn ren v området R {(, y) : <, y < f ( )} då Svr: ) R {(, y) : <, y < } ) R {(, y) : < <, y < } rctn c) R {(, y) : <, y < } d) R {(, y) : <, y < } ) Aren d [ rctn ] lim[ rctn rctn ] ) π π v

6 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Aren π d π d d c) Ledning : Med hjälp v sustitutionen rctn t d dt rctn får vi d (rctn ). rctn Aren d [(rctn ) ] d ln d) Aren [ ]. π Trots tt vi inte kn eräkn ekt värde v en generliserd integrl är det oft intressnt tt undersök om en integrlen konvergerr eller divergerr. Uppgift. Vis med hjälp v jämförelsestsen tt följnde integrler konvergerr. ) d ) e d c) d ln Lösning ) Eftersom i) e e för > 6 v

7 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler ii)integrlen, med den större integrnden, d konvergerr (, eräkn integrlen e själv), iii) åd integrnder är positiv för >, hr vi enligt jämförelsestsen tt ( den mindre integrlen) d också e konvergerr. ) Eftersom i) < för, ii) ( den större integrlen) d konvergerr ( eräknintegrlen själv) iii) åd integrnder är positiv för, hr vi enligt jämförelsestsen tt ( den mindre integrlen) d också konvergerr. c) d ln Integrnden är positiv eftersom > ln ( och ln < ) för > och därmed ln > > om > ( vi hr ). Uppskttningen lir svårre på grund v differensen i nämnren. I nämnren dominerr som tyder på tt integrlen konvergerr. Men en direkt jämförelse med den konvergent integrlen d går ej eftersom > för >. ln [ För tt vis konvergensen v funktion () g, dvs f ( ) g( ) f ( ) d med jämförelsestsen måste vi finn en större, sådn tt g ( ) d konvergerr.] k k Därför sk vi välj ett liknnde funktion, men sådn tt ln för stor k. Vi skriver om Integrnden ( ryter ut dominernde term) 7 v

8 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler ln ln för stor, dvs för ll större än något. [ Förklring: ln då och därför är uttrycket mindre än för stor.] Nu hr vi ln för >, Integrlen >). d konvergerr så är d också konvergent ( för någon ln Därmed är d d d konvergent. ln ln ln ( Lägg märke till tt den först integrlen d ln Riemnnintegrl.). är en vnlig Uppgift. Vis med hjälp v jämförelsestsen tt följnde integrl divergerr. d ln ) d ln Lösning. ) d ln Eftersom i) ln för > ii) integrlen ( med mindre integrnden) d ln( ) divergerr, iii) åd integrnder är positiv för >, 8 v

9 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler hr vi enligt jämförelsestsen tt integrlen (med större integrnden) d ln också divergerr ( d v s d ) ln ) ln d Vi etecknr f ( ) ln och gör en kvlificerd gissning om konvergensen. Eftersom där går mot då ser vi tt, för ln ln ln stor, ( dvs då ) är integrnden ekvivlent med. ln Därför påstår vi tt integrlen divergerr och nvänder jämförelsestsen tt evis dett. Direkt jämförelse med går ej eftersom f(). Vi måste finn en icke-negtivfunktion g() f() men sådn tt g ( ) d. Eftersom går mot då hr vi tt det finns ett stort tl så tt ln > om. ln Därför ln ln om. Vi hr > ln för och d dvs divergerr. Enligt jämförelsestsen är d ln ( divergent). 9 v

10 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Härv d d d dvs divergerr. ln ln ln (Noter tt den först integrlen d ln är en vnlig Riemnnintegrl.) Uppgift. estäm om följnde integrl konvergerr eller divergerr. ) Lösning. d ) d Först måste vi gör en kvlificerd gissning om integrler konvergerr eller divergerr. Därefter kn vi nvänd jämförelse kriterium och evis vårt påstående. För stor etrktr vi dominerde termer i täljre och nämnre. Integrnden är, för stor, ekvivlent med. Eftersom d är konvergent påstår vi tt evisr med hjälp v jämförelse stsen. d också konvergerr, som vi Vi hr tt ) i) åd integrnder är positiv i intervllet [, ) ii) i intervllet [, ) iii) och integrlen ( med större integrnden d konvergerr. Därför, enligt jämförelsestsen, är integrlen d också konvergent. För stor etrktr vi dominerde termer i täljre och nämnre. Integrnden är, för stor, ekvivlent med. v

11 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Eftersom d med hjälp v jämförelse stsen. är divergent påstår vi tt d också divergerr, som vi evisr Först finner vi en funktion g() som är, för stor, mindre än f ( ). Eftersom f ( ), och uttrycket då hr vi tt och därmed f ( ) för stor, säg >. Eftersom divergent. d divergerr hr vi, enligt jämförelsestsen tt d är också Därmed divergerr integrl över hel intervllet [, ), d d d. Vi smmnftt ovnstående metoder i följnde sts som är (i mång fll) ett enkelt sätt tt estämm om en integrl konvergerr eller divergerr : Uppgift. ) evis nednstående sts. Sts. ( finns ej i kursoken) Låt f () och g() två egränsde, icke-negtiv funktioner för. f ( ) Om lim A > g( ) ( A är ett reellt tl > ). v

12 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Då är integrler f ( ) d och g ( ) d ntingen åd konvergent eller åd divergent. ) Använd sts för tt estämm om följnde integrl konvergerr eller divergerr.. d. d. e e d evis. Eftersom lim f ( ) g( ) A kn vi för ett godtyckligt positivt tl ε > välj så tt för > f ( ) A ε < < A ε, som medför g( ) ( A ε ) g( ) < f ( ) < ( A ε ) g( ). Om vi nu väljer ε A, då hr vi A A g( ) < f ( ) < g( ), för >. i) Om g ( ) d konvergerr ( därmed konvergerr g ( ) d ) hr vi från olikheten A f ( ) < g( ) och jämförelsestsen tt f ( ) d och därmed f ( ) d också konvergerr. ii) Om A g ( ) d divergerr hr vi från olikheten g( ) < f ( ) tt f ( ) d också divergerr. f ( ) d och därmed Alltså vi hr evist tt, under förutsättningr i sts, integrlern är ntingen åd konvergent eller åd divergent.. Låt f ( ), vi väljer g ( ). v f ( ) d och g ( ) d

13 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler f ( ) Då hr vi lim > g( ) Dessutom g ( ) d Enligt sts konvergerr också. d, där åde () d konvergerr. f och g () är positiv i [,] f ( ) d d. Låt f ( ), vi väljer g( ). f ( ) Då hr vi lim > g( ) dessutom g ( ) d, där åde () d divergerr. Enligt sts divergerr också f och g () är positiv i [,) och f ( ) d d. f ( ). Integrlen konvergerr. (Tipps om g( ) så är e lim > g( ) ) v

14 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler. Generliserde integrler med en oegränsd integrnd: * Vi etrktr f ( ) d där f () är oegränsd i ändpunkten ( mer precis, f () oegränsd vrje omgivning ( ε, ) ). är Vidre ntr vi tt integrlen Vi definierr f ( ) d eisterr för ll där < < f ( ) d med hjälp v gränsvärdet lim f ( ) d. När vi eräknr lim f ( ) d kn tre fll förekomm: i) lim f ( ) d A, där A är ett reellt tl. I dett fll säger vi tt integrlen konvergerr, hr värdet A, och skriver f ( ) d A ii) iii) lim f ( ) d (eller ). Vi säger tt integrlen divergerr. lim f ( ) d eisterr inte. Vi säger tt integrlen divergerr. ** På liknnde sätt, med hjälp v lim f ( ) d, definiers konvergensen / divergensen v denn integrl om integrnden f () ändpunkten. *** Om f () f ( ) d smt är oegränsd i är oegränsd i en punkt c som ligger melln och då är c konvergent om och endst om åde f ( ) d och c f ( ) d f ( ) d konvergerr; i dett fll v

15 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler c f ( ) d f ( ) d c f ( ) d. Uppgift. i) Förklr vrför följnde integrler är generliserde och ii) estäm om integrlern är konvergent. ) / d ) d c) ( ) / d d) / d Lösning: ) i) / d är en generliserd integrl eftersom integrnden är oegränsd inom intervllet [,]. { Integrnden om / } ii) / / / / d [ ] [ ] / / om. Därmed konvergerr integrlen och hr värde / d /. ) i) d är en generliserd integrl eftersom integrnden [,]. { Integrnden om } är oegränsd i intervllet v

16 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler ii) d [ ] [ ] 8 om. Integrlen divergerr. c) i) ( ) / d intervllet [,]. { Integrnden är en generliserd integrl eftersom integrnden är oegränsd i ( ) / om } ii) Svr: Integrlen konvergerr, d. / ( ) d) / d intervllet [,]. { Integrnden är en generliserd integrl eftersom integrnden är oegränsd i / om } ii) Från f ( ) / ( ) ( ) / / < < hr vi 6 v

17 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler / [ ( ) ] d / d / ( ) / [ ( ) ] d / d / ( ). Alltså, åd integrler hr värdet f ( ) d, f ( ) d konvergerr, därmed konvergerr f ( ) d och f ( ) d f ( ) d f ( ) d Uppgift 6. Vis tt d konvergerr om och endst om p <. p Lösning: ) Om p< hr vi p p d p ( där eponenten -p >) p p p går mot p då. Därmed konvergerr integrlen om p <. ) ) Om p hr vi d [ ln ] ln ln går mot då. Därmed divergerr integrlen om p. c) Om p > hr vi p p d p ( där eponenten -p <) ( p) p ( p) p p går mot då. Därmed divergerr integrlen om p>. 7 v

18 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler Vi hr därmed vist tt d konvergerr om och endst om p <. p Anmärkning. Ovnstående integrl nvänds oftst vid tillämpning v jämförelsestsen. Uppgift 7. estäm om nednstående generliserde integrler konvergerr eller divergerr. ) / d ) / d / c) / d Lösning: ). Eftersom < i intervllet (,) och / /. integrlen / d konvergerr. Därför, enligt jämförelsestsen, konvergerr också / d. / / ) Svr. Integrlen divergerr (Ledning: ) / c) För tt gör en kvlificerd gissning ryter vi ut potenser med minst eponenter i täljren och nämnren ( dominernde termer då går mot ) och förkortr råket: / / / / / / / / / / Eftersom / går mot då går mot hr vi tt / integrnden / är ekvivlent med / om är när. / Därför påstår vi tt / d konvergerr ( ty / d konvergerr) Vi kn nu nvänd jämförelse stsen ( i ett intervll när ) och evis påstående: 8 v

19 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler / Eftersom / går mot då går mot hr vi tt utrycket är mindre än / i ett Intervll (, c] och därmed / / / / / / c Eftersom konvergerr. / d / / konvergerr hr vi, enligt jämförelse stsen, tt / c d också Därför är / / d c d / / / c / d konvergent. ( Lägg märke till tt ndr integrlen är INTE generliserd utn en vnlig Riemnnintegrl). lndde eempel. Uppgift 8. Nednstående integrler är generliserde på två sätt. Integrtionens intervll är oändligt och. Integrnden är oegränsd ( går mot då går mot ). estäm om integrlern konvergerr. ) / d ) d c) / d d) e d Lösning. )För tt estämm om I / d konvergerr etrktr vi integrlern I / d och I / d. ( Noter tt integrlen I konvergerr endst om åde I och I konvergerr. ) Integrl I / d divergerr ( integrl d p divergerr om p ). Därmed I / d också divergerr. 9 v

20 Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler ) d divergerr eftersom d divergerr c) Svr: konvergerr. / d konvergerr eftersom åde / d och / d Tipps. Använd jämförelsestsen för tt evis tt de två sist integrler konvergerr. / d konvergerr eftersom < / / om > och därmed även i intervllet <. / d konvergerr eftersom < / om > och därmed i intervllet <. d) e d e konvergerr eftersom åde d och e d konvergerr. Tips. Använd jämförelsestsen för tt evis tt de två sist integrler konvergerr. e d konvergerr eftersom e i intervllet <. e d konvergerr eftersom e e i intervllet <. v

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys Mtemticentrum Mtemti NF ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Mtemtis Anlys en vribel Toms Clesson och Per-Anders Ivert Generliserde integrler och summor. Generliserde integrler över obegränsde intervll

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?...................... 5.2 Definitioner, stser och bevis................... 5.3 Mängder...............................

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips

TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips TNA004 Anlys II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 06 TNA004, Anlys II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

============================================================

============================================================ H0009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Någr eemel me linjär ekvtioner oh ekvtioner som kn förenkls till linjär ekvtioner. Mn kn förenkl en ekvtion me hjäl v följne

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

14 Trippelintegraler integration av funktioner av tre variabler

14 Trippelintegraler integration av funktioner av tre variabler Nr, 8 pril -5, Ameli Trippelintegrler integrtion v funktioner v tre vribler. Areor och volmer.. Are som enkelintegrl och som dubbelintegrl Som beknt kn enkelintegrlen R b fx)dx kn tolks som ren under fx)

Läs mer

TATA42: Envariabelanalys 2 VT 2016

TATA42: Envariabelanalys 2 VT 2016 TATA4: Envribelnlys VT 6 Föreläsningsnteckningr John Thim, MAI L =? TATA4: Föreläsning Kurvlängd, re och volym John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på

Läs mer

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER ANDRZEJ SZULKIN & MARTIN TAMM. Inledning Dett ompendium innehåller mteril som ompletterr ursboen Persson&Böiers, del 2. De inlednde fem vsnitten

Läs mer

Föreläsning 8: Extrempunkter

Föreläsning 8: Extrempunkter Krlstds universitet Mtemtik Nicls Bernhoff Repetition: Bestämd integrl: Räkneregler: Föreläsning 8: Extrempunkter f(x)dx = [F(x)] b =F(b) F(), där F (x) = f(x) 1. 2. 3. 4. 5. 6. f(x)dx=0 f(x)dx= kf(x)dx=k

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Laborationstillfälle 3 Numerisk integration

Laborationstillfälle 3 Numerisk integration Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14 Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF Integrler Från len: Integrler Beräkningsvetenskp I/KF Trpetsformeln oc Simpsons formel Integrler Integrler Från len: Från len: Adptiv metod (dptiv Simpson) Lösning v integrl i Mtl: när integrnden är kontinuerlig

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2 RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i snnolikhetsklkyl och sttistik Smmnfttning, del I G. Gripenerg Alto-universitetet 6 feruri 2015 1 Snnolikheter Oeroende Betingd snnolikhet Byes formel Klssisk snnolikhet och komintorik

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Försök med vallfröblandningar Av Nilla Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsala E-post: Nilla.Nilsdotter-Linde@ffe.slu.

Försök med vallfröblandningar Av Nilla Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsala E-post: Nilla.Nilsdotter-Linde@ffe.slu. Försök med vllfröblndningr Av Nill Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsl E-post: Nill.Nilsdotter-Linde@ffe.slu.se Smmnfttning Målsättningen med försöksserien hr vrit tt sök

Läs mer

Björnen och sköldpaddan Analys av en matematiskt paradoks

Björnen och sköldpaddan Analys av en matematiskt paradoks Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Om stationära flöden och Gauss sats i planet

Om stationära flöden och Gauss sats i planet Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom

Läs mer