Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola"

Transkript

1 Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol

2 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten för linjen genom punktern (x, f(x)) oc (x +, f(x + )). y=f(x) (x+,f(x+)) (x,f(x)) Figur 1: Differenskvoten kn tolks som riktningskoefficienten för linjen melln punktern (x, f(x)) oc (x +, f(x + )). Derivtn f (x) v funktionen f(x) i punkten x fås som gränsvärdet v differenskvoten då går mot noll oc tolks geometriskt som riktningskoefficienten till funktionens tngent i punkten x. 2 Derivtn för f(x) = x 2 Vi börjr med tt titt på funktionen f(x) = x 2. Differenskvoten blir (x + ) 2 x 2 Utveckling med kvdreringsregeln oc förenkling ger 2x + 2 = 2x + Gränsvärdet blir 2x då går mot noll oc vi r vist tt f (x) = 2x. 2

3 3 Derivtn för f(x) = x n Vi sk nvänd Mxim för tt ärled en llmän deriveringsregel för f(x) = x n där n är ett eltl. Vi börjr med f(x) = x 3. Strt Mxim oc skriv in f(x) := x^3 d : (f(x+) - f(x))/ Förenkl differenskvoten d genom tt ge kommndot rtsimp(d) Skriv ner det förenklde uttrycket oc bestäm derivtn genom tt låt gå mot noll. Upprep proceduren för funktionern f(x) = x 4, x 5, x 6. Vi tittr nu på funktionen f(x) = x 1 = 1/x. Skriv in f(x) := x^-1 d : (f(x+)-f(x))/ Förenkl differenskvoten d genom tt ge kommndot rtsimp(d) Skriv ner det förenklde uttrycket oc bestäm derivtn genom tt låt gå mot noll. Upprep proceduren för funktionern f(x) = x 2, x 3, x 4. Smmnftt det du r gjort oc skriv upp en llmän regel för derivtion v funktionen f(x) = x n där n är ett eltl. 3

4 4 Definition v integrl Låt f(x) vr en kontinuerlig funktion i ett intervll [, b]. Vi delr in intervllet i n stycken lik stor delintervll med jälp v indelningspunktern = x 0, x 1, x 2,..., x n 1, x n = b. Om vi betecknr mittpunkten i intervllet [x i 1, x i ] med ξ i oc låter x i = (b )/n stå för bredden v intervllet så fås integrlen b f(x)dx som gränsvärdet v den så kllde Riemnnsummn n f(ξ i ) x i i=1 då n går mot oändligeten. Riemnnsummn kn geometriskt tolks som ren (med tecken) v stplrn med bredden x i oc öjden f(ξ i ) oc då n går mot oändligeten övergår summ v stpelreorn till ren under grfen. y=f(x) =x x x x ξ x i 1 i i x x =b n 1 n Figur 2: Integrlen b f(x)dx fås som gränsvärdet v Riemnnsummn då ntlet intervll n går mot oändligeten. 5 Smbnd melln integrler oc derivt Leibniz oc Newton fnn ett smbnd melln integrler oc derivtor oc vi r den så kllde insättningsformeln b f(x)dx = F(b) F() 4

5 där F(x) är den primitiv funktionen till f(x), dvs F(x) är sådn tt F (x) = f(x). Insättningsformeln innebr ett mycket stort steg frmåt oc integrlen v t.ex. prbeln y = x 2 som under ntiken de beräknts v Arkimedes med ytterligt komplicerde summtionsmetoder kunde nu enkelt beräkns på en rd. 6 Integrl för f(x) = x n Vi sk nvänd Mxim för tt komm frm till insättningsformeln för f(x) = x n där n är ett positivt eltl. Vi börjr med f(x) = x 2. Sätt upp oc beräkn Riemnnsummn genom tt ge kommndon dx : (b-)/n f(x) := x^2 s : sum(f(+(i-1/2)*dx)*dx,i,1,n), simpsum Förenkl summn med rtsimp(s) Skriv ner det förenklde uttrycket för Riemnnsummn oc bestäm integrlen genom tt låt n gå mot oändligeten. Upprep proceduren för funktionern f(x) = x 3, x 4, x 5. Smmnftt det du r gjort oc skriv upp en llmän regel för integrtion v funktionen f(x) = x n där n är ett positivt eltl. Vis tt formeln är i överensstämmelse med insättningsformeln. 7 Redovisning v uppgiftern Uppgiftern skll redoviss i en skriftlig rpport skriven i Word eller Open Office som lämns in gruppvis. I rpporten skll det finns en smmnfttnde teoribkgrund. Resultt oc uttryck från Mxim skll redoviss. Förslgsvis kopierr ni utskriftern från Mxim direkt in Word med jälp v Edit oc Copy s imge (se vsnitt 1.8 i Mtemtik med dtorlgebrsystem). Slutsts oc smmnfttning skll också finns med i rpporten. Som frivillig extruppgift kn gruppen skp en egen Mximuppgift som lämpr sig för någon v gymnsiets kurser A-E. Det kn ndl om llt från differentilekvtioner till ur mn sätter summor v bråktl på minst gemensmm nämnre. En väl genomtänkt oc br formulerd uppgift vikts in positivt i kursens slutbetyg. 5

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Laboration i matematik Envariabelanalys 2

Laboration i matematik Envariabelanalys 2 Lbortion i mtemtik Envribelnlys Per-Anders Boo Institutionen för mtemtik och mtemtisk sttistik Umeå universitet Jnuri Regler och llmän informtion om lbortionen I denn lbortion finns uppgifter som skll

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Matematisk analys, laboration III. Per Jönsson Teknik och Samhälle, Malmö Högskola

Matematisk analys, laboration III. Per Jönsson Teknik och Samhälle, Malmö Högskola Mtemtisk nlys, lbortion III Per Jönsson Teknik och Smhälle, Mlmö Högskol 1 Viktig informtion om lbortionern I nlyskursen ingår tre obligtorisk lbortioner. Under lbortion 1 nvänds Mtlb/GNU Octve och under

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Föreläsning 8: Extrempunkter

Föreläsning 8: Extrempunkter Krlstds universitet Mtemtik Nicls Bernhoff Repetition: Bestämd integrl: Räkneregler: Föreläsning 8: Extrempunkter f(x)dx = [F(x)] b =F(b) F(), där F (x) = f(x) 1. 2. 3. 4. 5. 6. f(x)dx=0 f(x)dx= kf(x)dx=k

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Stokastiska variabler

Stokastiska variabler Kpitel 4 Stokstisk vribler Ett utfll v ett slumpmässigt försök är oft sådnt som inte direkt kn mäts. T.ex. försöket Kst med ett symmetriskt mynt hr utfllsrummet {kron, klve}. För tt kvntittivt nlyser försök

Läs mer

Laborationstillfälle 3 Numerisk integration

Laborationstillfälle 3 Numerisk integration Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft

Läs mer

RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.

RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim. RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Projekt Analys 1 VT 2012

Projekt Analys 1 VT 2012 Mtemtikcentrum Mtemtik NF Projekt Anlys 1 VT 2012 Innehåll 1 En differentilekvtion 2 2 Epsilon och delt 4 3 Den logritmisk integrlen och primtl 6 4 Fltning och tt tämj vild funktioner 7 5 Tlet e 9 6 Anlytisk

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Integraler och differentialekvationer

Integraler och differentialekvationer Föreläsningr över Integrler och differentilekvtioner för livnde ingenjörer Mikel P. Sundqvist 5 decemer 26 Innehåll Någr ord till läsren 5 Introduktion till kursen 7 2 Integrlegreppet 9 3 Integrlklkylens

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

MATLAB-Laboration. Linjär algebra med geometri Handledare: Karim Daho IT-1 Björn Andersson Johannes Nordkvist Erik Isoniemi

MATLAB-Laboration. Linjär algebra med geometri Handledare: Karim Daho IT-1 Björn Andersson Johannes Nordkvist Erik Isoniemi 9) MTLBLbortion Linjär lgebr med geometri Hndledre: Krim Dho 2624 IT Björn ndersson Johnnes Nordkvist Erik Isoniemi MTLB är ett progrm för berbetning v mtemtisk problem. I denn rpport sk vi vis hur nvändndet

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14 Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler

Läs mer

XIV. Elektriska strömmar

XIV. Elektriska strömmar Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Fri programvara i skolan datoralgebraprogrammet Maxima

Fri programvara i skolan datoralgebraprogrammet Maxima Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och

Läs mer

Björnen och sköldpaddan Analys av en matematiskt paradoks

Björnen och sköldpaddan Analys av en matematiskt paradoks Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.

Läs mer

TATA42: Envariabelanalys 2 VT 2018

TATA42: Envariabelanalys 2 VT 2018 TATA42: Envribelnlys 2 VT 28 Föreläsningsnteckningr John Thim, MAI L =? TATA42: Föreläsning Mclurinutecklingr John Thim 4 mrs 28 Introduktion Tänk er följnde sitution. En snäll funktion f är given, men

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?...................... 5.2 Definitioner, stser och bevis................... 5.3 Mängder...............................

Läs mer

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

FEM2: Randvärdesproblem och finita elementmetoden i flera variabler

FEM2: Randvärdesproblem och finita elementmetoden i flera variabler MVE255 Mtemtisk nlys i fler vribler M FEM2: Rndvärdesproblem och finit elementmetoden i fler vribler 1 1.1 Prtiell integrtion Kom ihåg tt finit elementmetoden bygger på den svg formuleringen v rndvärdesproblemet

Läs mer

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de

Läs mer

Gödselmedel i jordbruket

Gödselmedel i jordbruket Sttistisk centrlbyrån SCBDOK 3.2 (5) Gödselmedel i jordbruket 202/203 MI00 Inneåll 0 Allmänn uppgifter... 2 0. Ämnesområde... 2 0.2 Sttistikområde... 2 0.3 SOS-klssificering... 2 0.4 Sttistiknsvrig...

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19 Dagens ämnen 1 / 19 Dagens ämnen Numeriska serier 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser 1 / 19 Dagens

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

Bilaga 1. Beskrivning av uppgifterna och provresultaten

Bilaga 1. Beskrivning av uppgifterna och provresultaten Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

Om stationära flöden och Gauss sats i planet

Om stationära flöden och Gauss sats i planet Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom

Läs mer

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen 2016-05-23 Sid 1/2 Tjänsteskrivelse Dnr: LKS 2016-235 Kommunstyrelseförvltningen Leif Schöndell, 0523-61 31 01 leif.schondell@lysekil.se Pln för lik rättigheter och möjligheter i rbetslivet uppdrg till

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

M0038M Differentialkalkyl, Lekt 16, H15

M0038M Differentialkalkyl, Lekt 16, H15 M0038M Differentialkalkyl, Lekt 16, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 25 Repetition Lekt 15 Femte och trettioförsta elementet i en aritmetisk talföljd är 7

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

Analys - Area. Kurvan kallas Descartes blad. Kurvans ekvation i parameterform är. t 3

Analys - Area. Kurvan kallas Descartes blad. Kurvans ekvation i parameterform är. t 3 Anlys - Are Kurvn klls Descrtes bld. Kurvns ekvtion i prmeterform är och t y(t). t (t) Vis tt (,) y stisfierr uttrycket t t y y.. Integrler och reor... Primitiv funktioner..9. Areberäkningr och tillämpningr.

Läs mer

Grafisk Profil. Välkommen in i Korvpojkarnas grafiska värld.

Grafisk Profil. Välkommen in i Korvpojkarnas grafiska värld. Grfisk Profil Du hr fått den här foldern i Din hnd eftersom Du på något sätt hr med vårt vrumärke och dess reproduktion tt gör. Här finns ll informtion Du behöver för tt se vilk vi är smt vilk typsnitt

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

============================================================

============================================================ H0009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Någr eemel me linjär ekvtioner oh ekvtioner som kn förenkls till linjär ekvtioner. Mn kn förenkl en ekvtion me hjäl v följne

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck

> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck > VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET

Läs mer

Sommarmatte. Matematiska Vetenskaper. 8 april 2009

Sommarmatte. Matematiska Vetenskaper. 8 april 2009 Innehåll Sommrmtte del Mtemtisk Vetenskper 8 pril 009 5 Ekvtioner och olikheter 5. Komple tl............ 5.. Algebrisk definition, imginär rötter....... 5.. Geometrisk representtion, polär koordinter...

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Mälardalens högskola Akademin för undervisning, kultur och kommunikation

Mälardalens högskola Akademin för undervisning, kultur och kommunikation Mälardalens ögskola Akademin för undervisning, kultur oc kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0..08 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer