Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4.

Storlek: px
Starta visningen från sidan:

Download "Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4."

Transkript

1 Denn föreläsning DN11 Numerisk metoder och grundläggnde progrmmering FN Hedvig Kjellström Repetition v FN3 (GNM kp 4.1)! Interpoltion! Minst-kvdrtnpssning! Dignostiskt prov på FN,3! Numerisk derivering (GNM kp 1.3C)! Frmåt-, bkåt, centrldifferens! Numerisk integrering (GNM kp 5)! Trpetsregeln! Trpetsregeln med feltermskorrektion! Adptiv metoder 1!! Linjär ekvtionssystem Repetition v FN3 (GNM kp 4.1)! Givet: A och b! Mål: tt bestämm x =!! Gusseliminering (för hnd eller med dtor: x = A\b)! Lösbrt om det(a)!! A ickesingulär 3! 4!

2 Vnligste tillämpning v linjär ekvtionssystem! Polynominterpoltion melln punkter (lb) Polynominterpoltion inte br om n stort! Runges fenomen 5! 6! Då kn mn nvänd styckvis (linjär) interpoltion! Rät linje (1-grdspolynom) melln vrje punkt Överbestämd linjär ekvtionssystem =!! Lös i minstkvdrtmening genom tt välj x som minimerr! Lb, när polynomgrd < n - 1 7! 8!

3 Vnligste tillämpning v överbestämd ekvtionssystem! Minstkvdrtnpssning v polynom till punkter (lb) Minstkvdrtnpssning v polynom till punkter! Minimer! Normlekvtionern på mtrisform: 9! 1! Hjälpmedel i Mtlb! Behöver inte implementer normlekvtionern! Lösning v linjär ekvtionssystem: \!! Både gusseliminering och minstkvdrtnpssning! Numerisk derivering (GNM kp 1.3C)! Polynomnpssning: polyfit, polyvl! Både interpoltion och pproximtion! 11! 1!

4 Frmåtdifferenskvot Bkåtdifferenskvot f (x) = f(x + h) f(x) h + ch f (x) = f(x) f(x h) h + ch! Härled mh Tylorutveckling! Härled mh Tylorutveckling f(x + h) =f(x)+hf (x)+ h f (x)+... hf (x) =f(x + h) f(x) f (x) h + (termer h ) f(x h) =f(x) hf (x)+ h f (x)... hf (x) =f(x) f(x h)+ f (x) h (termer h ) 13! 14! Noggrnnhetsordning p Noggrnnhetsordning p! Rep från FN: Konvergensordning p för itertion! Trunkeringsfel h n = ch p n 1! Hur fort minskr felet med ntl itertioner?! Noggrnnhetsordning p för derivering, integrering, diffekv! Trunkeringsfel e(h) =c 1 h p + c h q + c 3 h r +... p < q < r <...! Hur fort minskr felet när mn minskr steglängden?! Frmåtdifferens e(h) =f f(x + h) f(x) (x) = ch h p =1! Bkåtdifferens e(h) =f f(x) f(x h) (x) = ch h p =1 15! 16!

5 Centrldifferens f f(x + h) f(x h) (x) = + ch h f f(x + h) f(x)+f(x h) (x) = h + ch! Högre noggrnnhetsordning, p=! Går också tt härled mh Tylorutveckling! Men också intuitivt! Bättre än både frmåt- och bkåtdifferens! Överensstämmer med noggrnnhetsordning Numerisk integrering (GNM kp 5) x + h x x h 17! 18! Integrering över slutet intervll! Numerisk metoder för integrering! Förbehndling för numerisk integrering Newton-Cotes formler! Ersätter f(x) med n-polynom! Lätt tt integrer ett polynom! Polynomnpssning lärde vi oss i FN3! I prktiken gör mn inte dett explicit, utn! Ersätter integrlen med summ P n (x) dx n w i f(x i ),x i = hi + i=! w i är vikter! Se för en härledning 19!!

6 Trpetsregeln! Vnligt specilfll v Newton-Cotes n w i f(x i ),x i = hi + i= w = h w i = h, < i < n w n = h Trpetsregelns noggrnnhetsordning p T (h) =h( f(x )! Trunkeringsfel e(h) =T (h) n 1 + i=1 f(x i )+ f(x n) ) = c 1 h + c h 4 + c 3 h ch! Summ v reor v trpetser! dvs noggrnnhetsordning p= xi+1 x i h f(x i)+f(x i+1) b 1!! Richrdsonextrpoltion! Idé: uppsktt c pred genom tt vrier h och mät felet e(h) för trpetsmetoden! Tex beräkn e(h) och e(h) e(h) =T (h) e(h) =T (h) c pred (h) =4c pred h c pred h T (h) T (h) 3c pred h T pred (h) =T (h) c pred h = T (h)+ T (h) T (h) 3 Trpetsregeln med Richrdsonextrpoltion = Simpsons formel! Kll T pred för S S(h) =T (h) c pred h = T (h)+ T (h) T (h) 3 = = = h 3 (f +4f 1 +f +4f f n +4f n 1 + f n ) 3! 4!

7 Adptiv metoder! Trpetsmetoden och Simpson hr konstnt steg h! Men om f(x) ser ut såhär? Förberednde åtgärder (numerisk)! Del upp integrnden f(x)! Kn någon term löss nlytiskt? f(x) =.5+e (1x+134)! Mtlbmetodern qud och qudl! b! Integrering över övrig termer bättre konditionerd!! Del upp intervllet [,b]! Är någon term mycket liten på någon del v intervllet? e (1x+134) dx.5+e (1x+134) dx +.5 dx ! 6! Förberednde åtgärder (numerisk)! Kp intervllet [,b]! Är f(x) mycket liten på någon del v intervllet? 5 e x dx e x dx Förberednde åtgärder (nlytisk)! Substituer x = g(t)! Förenklr på smm sätt som när mn räknr med ppper och penn.5 x.34 π dx = {x = sin t} = 6 1 x = { } 1 sin t = cos t sin.34 t cos t dt = 1 sin t = π 6 sin.34 t dt 7! 8!

8 Förberednde åtgärder (nlytisk)! Prtiell integrering! Förenklr på smm sätt som när mn räknr med ppper och penn 1 e x x dx = {f(x ) } = = xe x 1 +4 =e x xe x dx x xe x dx = 9! Eget rbete! Till näst övning (onsdg):! Läs GNM kp 1.3C, 5! Till näst föreläsning (näst torsdg):! Läs GNM kp ! T med GNM! På hemsidn: Utdelt i menyn! Föreläsningsnteckningr! Övningstl! Läsnvisning till GNM! Lbbr 3!

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Integration: Kvadratur

Integration: Kvadratur F6 Integrtion: Kvdrtur Upprepd trpetsregel, Simpsons ormel Etrpoltion Generliserde integrler Guss-kvdrtur MATLAB Monte Crlo -- BE HT F 9? Kvdrtur, I Beräkn I Integrnd n d som I w Vikter Askissor också

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Laborationstillfälle 3 Numerisk integration

Laborationstillfälle 3 Numerisk integration Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF Integrler Från len: Integrler Beräkningsvetenskp I/KF Trpetsformeln oc Simpsons formel Integrler Integrler Från len: Från len: Adptiv metod (dptiv Simpson) Lösning v integrl i Mtl: när integrnden är kontinuerlig

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 21 december Bordsnummer:

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 21 december Bordsnummer: FÖRSÄTTSBLAD TILL TENTAMEN Din tentmenskod (6 siffror): ELLER (fyll br i om du sknr tentmenskod): Personnummer: - Dtum: december Kursens nmn (inkl. grupp): Beräkningsvetenskp I (TD393), KF (TD399) Termin

Läs mer

Mat Grundkurs i matematik 1, del III

Mat Grundkurs i matematik 1, del III Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning innebär approximation. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning innebär approximation. Kurvanpassning jfr lab Kurvnpning Beräkningvetenkp II Punktmäng > pproimerne unktion Finn olik ätt tt pproimer me polynom Prolem me hög grtl kn ge tor kt Från lortionen, olik Mtlkommnon: [ 9 ]; y [ ]; linpe,; % kp -el p polyit,y,

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Laboration i matematik Envariabelanalys 2

Laboration i matematik Envariabelanalys 2 Lbortion i mtemtik Envribelnlys Per-Anders Boo Institutionen för mtemtik och mtemtisk sttistik Umeå universitet Jnuri Regler och llmän informtion om lbortionen I denn lbortion finns uppgifter som skll

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Interpolation. 8 december 2014 Sida 1 / 20

Interpolation. 8 december 2014 Sida 1 / 20 TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!

Läs mer

NUMOPEN Om kvadratur. Exempel. NUMOPEN VT11 Förel JOp p 1(9) ν c. 10 tentor, Trapetsmetod poäng

NUMOPEN Om kvadratur. Exempel. NUMOPEN VT11 Förel JOp p 1(9) ν c. 10 tentor, Trapetsmetod poäng Jp p 9 UMPE --7 m vdrtur tentor, rpetsmetod poäng Del p Del 5p / /5 ALLSÅ ör % v tiden ägns trpetsmetoden? - ormler - el - Etrpoltion mtls untioner QUAD, QUADL, QUADGK - Generliserde integrler singulritet

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer

Polynominterpolation av kontinuerliga

Polynominterpolation av kontinuerliga Polynominterpoltion v kontinuerlig funktioner Smmnfttning Anders Källén MtemtikCentrum LTH nderskllen@gmil.com I det här dokumentet diskuterr vi lite kring hur mn kn pproximer kontinuerlig funktioner med

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9

Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Beräkning av integraler

Beräkning av integraler Beräkning av integraler a b f(x) dx = {ytan mellan kurvan och x-axeln från a till b} Många tekniska beräkningsproblem kan formuleras som integraler. En del integraler kan beräknas exakt men flertalet kan

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder? Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12 Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07 Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Lösning av Tentamen i Numerisk Analys V3, FMN020, Carmen Arévalo

Lösning av Tentamen i Numerisk Analys V3, FMN020, Carmen Arévalo Lösning v Tentmen i Numerisk Anlys V3, FMN2, 312 Crmen Arévlo Denn tentmen börjr kl 14: och slutr kl 17:. För godkänt krävs minst 5 poäng v 1: 5 66 poäng = betyg 3, 67 83 poäng = betyg 4, 84 1 poäng =

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Matematik: Beräkningsmatematik (91-97,5 hp)

Matematik: Beräkningsmatematik (91-97,5 hp) DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 28 mj 209 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer