9 Dubbelintegralens definition

Storlek: px
Starta visningen från sidan:

Download "9 Dubbelintegralens definition"

Transkript

1 Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om) x-xeln negtivt. Areor för rektnglr, som ju är bsen gånger höjden, nvänds för tt definier Riemnnintegrlen, som skisss härnäst. 9.. Integrerbrhet En begränsd funktion f(x), definierd på ett intervll [, b], är integrerbr om den kn "godtykligt nog" uppsktts med två stykevis konstnt funktioner u(x) oh ö(x). Häru(x) är en underfunktion (u(x) f(x) överllt) oh ö(x) är en överfunktion (ö(x) f(x) överllt). Krvet för integrerbrhet (betydelsen v "godtykligt nog") är tt hur litet fel ε vi än kräver så finns det en underfunktion oh en överfunktion till f(x) så tt ren melln de två inte är större än ε. Smm sk i formler: för ll ε> finns det stykevis kostnt funktioner u(x) oh ö(x) så tt u(x) f(x) överllt oh ö(x) f(x) överllt så tt (ö(x) u(x))dx < ε. Här är R b (ö(x) u(x))dx lätt tt definier som ren v en smling rektnglr, eftersom u(x) oh ö(x) är stykevis konstnt funktioner. Aren v en underohöverfunktionkllsenunder-ohöversumm. Integrlen R b f(x)dx definiers då som det tl som ligger melln ll undersummor oh ll översummor till f(x). På grund v integrerbrheten, beskriven ovn, finns det br ett sådnt tl. Eftersom ren melln u(x) oh ö(x) täker grfen till f så kn mn säg tt integrerbrhet betyder tt grfen till f sk kunn täks v rektnglr som hr hur liten totl re som helst. et är klrt tt mn i llmänhet behöver en fin indelning oh ett myket stort ntl små rektnglr för tt uppnå en myket liten sådn totl re. Mn kn vis tt ll begränsde kontinuerlig funktioner är integrerbr. Även ll stykevis kontinuerlig begränsde funktioner är integrerbr. et är inget problem om funktionen gör hopp i viss punker, ty ren över en punkt är noll, det är en rektngel med bredd noll. En mängd v en ändligt ntl enstk punkter är en nollmängd, det gör inget för integrlens värde om vi ändrr funktionsvärden på en nollmängd. Nollmängder inte är särskilt viktig för enkelintegrlen, men viktigre för dubbelintegrlen. En funktion är stykevis konstnt på intervllet [.b] om [, b] kndelsuppiändligt mång delintervll så tt funktionen är konstnt på vrje delintervll.

2 En uppräknelig mängd punkter är okså en nollmängd, men ett helt intervll [, b] v reell tl (om <b) är inte uppräknelig, oh inte en nollmängd (det finns dok överuppräknelig nollmängder). 9.. Räkneregler för integrtion Från rektngelreorn som integrtion v stykevis konstnt funktioner svrr mot, ärver integrlen ett ntl räkneregler. et finns mång räkneregler (oh därmed rbetssätt) som är nvändbr då en integrl sk studers. f(x)dx = (f(x)+g(x))dx = f(x)dx f(x)dx = Z d f(x)dx (I: linjritet ) f(x)dx + d g(x)dx (I: linjritet, horisontell uppdelning) g(x)dx om f(x) g(x) i x [, b] f(x)dx + f(x)dx (I3, monotoniitet) (I4, vertikl uppdelning) Här är intuitiv tolkningr v dess räkneregler:. Om vi multiplierr ll rektnglrs höjd med en kontnt, så multiplierr vi den totl ren med en konstnt.. Om vi plerr två rektngelsmlingr ovnpå vrndr ( f(x)+g(x)) så är ren smm som om de beräkns vr för sig. 3. Om viss rektnglrs höjd ökr, oh ingen minskr, så ökr totl ren. 4. Aren från vänster frm till en viss punkt d plus återstoden v ren är lik stor som hel ren Riemnnsummor En Riemnnsumm till en funktion f(x) på [, b] behöver inte vr en undereller översumm. et är ren v en stykevis konstnt funktion på [, b] vrs höjd för vrje delintervll är något funktionsvärde i delintervllet. ess re är därför melln vrje under- oh översumm, oh konvergerr därmed mot R b f(x)dx om indelningens finhet går mot noll. Gränsövergången är enklst om integrtionsintervllet för Riemnnsummn är indeld i lik stor delr. Om vi hr n intervll hr då vrje delintervll längden b n, oh gränsövergången betyder tt n.

3 9..4 Arefunktioner oh primitiv funktioner Om mn låter en gränsen i en integrl vrier, vi kn kll denn gräns x, så hr vi en funktion v x, som klls en refunktion tilldenfunktionsom integrers. Alltså: F (x) = R x f(y)dx är en refunktion till f(x). Mn kn okså definier en primitiv funktion F (x) till f(x) somenfunktionvrsderivt är f(x), dvs F (x) =f(x). Anlysens huvudsts säger tt om f är kontinuerlig oh R integrerbr, så är en refunktion en primitiv funktion, dvs om F (x) = x f(y)dx så är deriverbr oh F (x) = f(x). enn sts gör tt mn kn konstruer regler för hur mn bestämmer primitiv funktion till en funktion från deriveringsregler. Stndrdderivtor ger stndrdintegrler. erivering v produkt ger upphov till prtiell integrtion. Kedjeregelns motsvrighet är vribelsubstitution. I bevisen v prtiell integrtion oh vribelsubstitution är det br tt (pg nlysens huvudsts) deriver integrlern, då stsern reduers till derivering v produkt respektive kedjeregeln Generliserde integrler Om f(x) är obegränsd i punkten b i intervllet (.b), eller om intervllet är obegränst, i vilket fll b är, så kn integrlen definiers ändå i viss fll. ett är s.k. generliserde ingegrler. En sådn integrl är konvergent om gränsvärdet lim y b Z y f(x)dx är konvergent, nnrs divergent. Mn kn då exempelvis vis tt Z x dx är konvergent om oh endst om <, oh tt x dx är konvergent om oh endst om >. Så både R x dx oh R x dx är divergent, ty ln x (primitiv funktion till x ) är obegränsd både då x = oh då x. Mn kn undersök om ndr generliserde integrler är konvergent eller divergent med jämförelsestser för gränsvärden med ndr integrler, vrv R x dx oh R x dx är de viktigste tt jämför med. 9. ubbelintegrlen Vi hr sett tt en funktion f(x, y) v två vribler, definierd i ett område (x, y) f R kn tolks som en yt. å tolks funktionsvärdet f(x, y) som höjden i punkten (x, y). I prmeterform är dett punktern (x, y, f(x, y)) R 3, 3

4 då (x, y) f. En nturlig fråg är hur stor volymen är för området melln denn yt oh xy-plnet, dvs volymen v punktmängden {(x, y, z) : z f(x, y), (x, y) f } om f(x, y) är en positiv funktion. Anlogt med enkelintegrlen, så räkns volymer under xy-plnet negtivt. Mn kn konstruer dubbelintegrlen som denn volym. Konstruktionen är nlog till konstruktionen v enkelintegrlen, men olik främst på ett sätt: geometrin i plnet R kn vr väsentligt mer invekld än i R. För en enkelintegrl lever integrtionsintervllen på R. Beräkning v en dubbelintegrl reduers nästn lltid till tt beräkn två enkelintegrler. Beräkningstekniken för enkelintegrler är därför helt fundmentl för beräkning v dubbelintegrler. 9.. Riemnnsummor En Riemnnsumm för en funktion f(x, y) ienrektngel = { x b, y d} R är en indelning v rektngeln i disjunkt delrektnglr kj så tt kj kj =. Vrje delrektngel kj hr re kj oh definierr ett rätblok vrs höjd är ett funktionsvärde i en punkt x kj irutn kj : X f(x k,y j ) kj k,j Om vrje Riemnnsumm konvergerr mot smm värde då indelningens finhet går mot noll, dvs ren v den störst rutn i indelningen går mot noll, så är funktionen (Riemnn-) integrerbr. Värdet v dubbelintegrlen f(x, y)dxdy är det värde som ll Riemnnsummorn konvergerr mot. Vi illustrerr förfrndet med ett exempel. Exempel (9) Ange en Riemnnsumm för xydxdy då = { x, y }, där vrje delrut hr sid n, oh beräkn dubbelintegrlen genom tt låt n. Lösning: Här är f(x, y) =xy. Låt x = k/n, k =,..., n oh y = j/n, j =,..., n, så f(x k,y j )= k j n n. Vrje rut hr re, så kj = n för ll k oh j. å är en Riemnnsumm nx k j n n n. k,j= 4

5 enn kn dels upp i en produkt v två summor nx k,j= k j n n = n 4 nx k k= nx j. Använd nu tt P n n(n+) k= k = n =. Summn P n j= j hr givetvis smm värde. et ger nx k j n n = n(n +) n(n +) n 4 = + (n 4 n ) k,j= =. 4 ( + n ) j= Låter vi n så får vi tt + n +=. Så nx k j n n n 4 = xydxdy. k,j= en sist likheten nger tt dubbelintegrlens värde är vd Riemnnsummorn konvergerr mot. Svr: xydxdy = 4. Vilk funktioner är integrerbr? Först kn mn vis tt ll kontinuerlig oh begränsde funktioner är integrerbr. et spelr ingen roll för värdet på integrlen f(x, y)dxdy om en värden för f ändrs på en delmängd v f f som är en nollmängd. Funktionen måste därför inte vr kontinuerlig. En nollmängd i plnet är en mängd som kn täks över v rektnglr (eller irklr) vrs re är hur liten som helst. Vi hr hittills endst bektt en rektngel i R som integrtionsområde. Integrlen över ett godtykligt begränst område f definiers som integrlen över en rektngel som innehåller området oh v den funktion som är f(x, y) i f oh utnför f, men i rektngeln. Vi hr grntert ing problem om rnden till f består v en mängd reguljär kurvor (kontinuerlig funktion r(t) med derivt r (t) som existerr oh är skild från nollvektorn i nästn ll punkter). Mn tlr inte om primitiv funktioner till dubbelintegrler, blnd nnt för det inte finns något nturligt sätt tt definier refunktion. Mn kn okså integrer m..p. två olik vribler. Generliserd dubbelintegrl definiers på nlogt sätt som generliserd enkelintegrl som ett gränsvärde då den problemtisk delen v området är borttget. Under gränsvärdet krymper den borttgn delen mot en nollmängd. 5

6 9.3 Beräkning v dubbelintegrler 9.3. Rektngulärt integrtionsområde Huvudberäkning för beräkning v en dubbelintegrlen är s.k. upprepd integrtion. Vi integrerr "en vribel i tget". Vi kn beräkn volymen v en kropp genom tt skiv den i tunn skivor, beräkn ren v vrje skiv (först integrtionen), oh lägg ihop dem med en ny integrtionsproess (ndr integrtionen). I den först integrtionen förekommer oftst den ndr vribeln som en konstnt under integrtionen. Om f = { x b, y d} så betyder det de följnde två enkelintegrlern: f Z d ( f(x, y)dxdy = f(x, y)dx)dy. Här integrers lltså x först melln oh b (inre integrlen), oh därefter y melln oh d (yttre integrlen). En lterntiv möjlighet är i omvänd ordning: f Z d ( f(x, y)dxdy = f(x, y)dy)dx. Skrivsättet dx Z d f(x, y)dy förekommer okså för den itererde integrlen R b (R d f(x, y)dy)dx. ett kn h betydelse, för viss integrler kn vi br klr i den en ordningen. Om båd vägrn är frmkomlig ger de givetvis smm resultt: volymen under ytn. Iblnd skrivs en sådn integrl som Z d f(x, y)dxdy = Z d ( f(x, y)dx)dy. Utn prentes brukr de först integrtionsgränsern svr mot den först "dx". Med prentes (upprepd integrtion) skrivs således gränsern i motstt ordning. Exempel (9b) Beräkn (sin x + y os x)dxdy då = {(x, y) : x π, y π }. Lösning: f f (sin x + y os x)dxdy = ( (sin x + y os x)dx)dy. 6

7 Vi löser först den inre integrlen, som är en vnlig enkelintegrl där en konstnt y får häng med: (sin x + y os x)dx = [ os x + y sin x] π {insättning v gränser} = ( os π + y sin π ) ( os + y sin ) = +y ++=y +. Så tt f (sin x + y os x)dxdy = (y +)dy = [ y + y] π = π 8 + π. et ger smm resultt tt integrer i motstt ordning, oh skriv llt i en klkyl: (sin x + y os x)dxdy = f {y först, x är konstnt!} = = ( (sin x + y os x)dy)dx [y sin x + y os x] y= π y= )dx ( π sin x + (π ) os x)dx [ π os x + (π ) sin x] π = [ π os π + (π ) sin π ] [ π os + (π ) sin ] = π + π Integrtionsområden begränsde v kurvor På ett område som i x-led begränss v rät linjer x =konstnt men i y-led begränss v kurvor, som = { x b, φ(x) y ψ(x)},kn vi gör den itererde integrtionen i y-led först: Z ψ(x) f(x, y)dxdy = ( f(x, y)dy)dx. et finns givetvis motsvrnde formel för integrtion i x-led först, på ett område v typen = {φ(y) x ψ(y), y d}. Mång integrtionsområden kn dels upp i delr, där vrje del är v en v dess två typer. φ(x) 7

8 Exempel 3 (94) Över vilket område kn den upprepde enkelintegrlen R dx R x f(x, y)dy ses som integrtionsområde för en dubbelintegrl? x Lösning: Vi hr { x, x y x}, så området är den fyrhörning som begränss v fyr rät linjer på följnde sätt: y x Svr: Området begränss v y = x, y = x, x =oh x =. Exempel 4 (97b) Beräkn +x+y dxdy då = {y x,y }. 8

9 y x Eftersom gränsern i x beror på y kn det vr enklst tt integrer x först. Vi får då (observer tt under x-integrtionen behndls y som en konstnt) +x +y dxdy = = = = {logritmlgr} = = dy y +x +y dx [ln( + x +y)] y dy (ln( + y) ln( + y +y))dy (ln ( + y) ln((y +) ))dy (ln + ln( + y) ln(y +))dy (ln ln(y +))dy = {prtilint., ln(y +)dy} = ln [(y +)ln(y +)] + (y +) y + dy = ln ln += ln. 9

10 Integrlen kn okså förmodligen beräkns med y-integrtion först. Mn kn i ll fll skriv upp den itererde integrlen: +x +y dxdy = Z x dx +x +y dy. Observ gränsern. e kn fås genom tt studer figuren över integrtionsområdet ovn. I y-ledskvigåfrånkurvny =till y = x. ärefter måste x gå från till för tt få med hel dett område. Svr: ln.

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

14 Trippelintegraler integration av funktioner av tre variabler

14 Trippelintegraler integration av funktioner av tre variabler Nr, 8 pril -5, Ameli Trippelintegrler integrtion v funktioner v tre vribler. Areor och volmer.. Are som enkelintegrl och som dubbelintegrl Som beknt kn enkelintegrlen R b fx)dx kn tolks som ren under fx)

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

Topologi och konvergens

Topologi och konvergens Topologi och konvergens för viss kurser vid Uppsl universitet Smmnställt v Anders Vretbld 997 års upplg, översedd 28 Innehåll Topologisk grundbegrepp. Öppn och slutn mängder 3.2 Gränsvärde och kontinuitet

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt

Läs mer

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14 Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Tavelpresentation grupp 5E

Tavelpresentation grupp 5E Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH Anlys 36 En webbserd nlyskurs Grundbok X. Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com X. Integrlklkyl (8) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Mängder i R n. Funktioner från R n till R p

Mängder i R n. Funktioner från R n till R p Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Om konvergens av funktionsföljder

Om konvergens av funktionsföljder Anlys 36 En webbserd nlyskurs Anlysens grunder Om konvergens v funktionsföljder Anders Källén MtemtikCentrum LTH nderskllen@gmil.om Om konvergens v funktionsföljder 1 (12) Introduktion I det här kpitlet

Läs mer

Studieplanering till Kurs 3b Grön lärobok

Studieplanering till Kurs 3b Grön lärobok Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Stokastiska variabler

Stokastiska variabler Kpitel 4 Stokstisk vribler Ett utfll v ett slumpmässigt försök är oft sådnt som inte direkt kn mäts. T.ex. försöket Kst med ett symmetriskt mynt hr utfllsrummet {kron, klve}. För tt kvntittivt nlyser försök

Läs mer

TATA42: Envariabelanalys 2 VT 2018

TATA42: Envariabelanalys 2 VT 2018 TATA42: Envribelnlys 2 VT 28 Föreläsningsnteckningr John Thim, MAI L =? TATA42: Föreläsning Mclurinutecklingr John Thim 4 mrs 28 Introduktion Tänk er följnde sitution. En snäll funktion f är given, men

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Mat Grundkurs i matematik 1, del III

Mat Grundkurs i matematik 1, del III Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 28 mj 209 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN

ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN Dett är tänkt tt vr en smmnfttning v det jg nser vr den viktigste teorin i kursen. Ing exempel ges, och det är inte lls tänkt tt på något vis vr ett substitut för kursboken.

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.

= y(0) 3. e t =Ce t, y = =±C 1. 4 e t. Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?...................... 5.2 Definitioner, stser och bevis................... 5.3 Mängder...............................

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Laborationstillfälle 3 Numerisk integration

Laborationstillfälle 3 Numerisk integration Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft

Läs mer

KTH, Matematiska institutionen, TK B 1106, Diff- och int I, Envariabel, för F1.

KTH, Matematiska institutionen, TK B 1106, Diff- och int I, Envariabel, för F1. KTH, Mtemtisk institutionen, TK 061201 5B 1106, Diff- och int I, Envribel, för F1. Kursens mål för godkänt: Studenten förvänts/skll efter genomgången godkänd kurs: H inhämtt funktionsbegreppet, inklusive

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4. Denn föreläsning DN11 Numerisk metoder och grundläggnde progrmmering FN4 9--17 Hedvig Kjellström hedvig@csc.kth.se! Repetition v FN3 (GNM kp 4.1)! Interpoltion! Minst-kvdrtnpssning! Dignostiskt prov på

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07 Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?..................... 5.2 Uppmning till läsren v dett häfte............. 5.3 Definitioner, stser och

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Polynominterpolation av kontinuerliga

Polynominterpolation av kontinuerliga Polynominterpoltion v kontinuerlig funktioner Smmnfttning Anders Källén MtemtikCentrum LTH nderskllen@gmil.com I det här dokumentet diskuterr vi lite kring hur mn kn pproximer kontinuerlig funktioner med

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

Envariabelanalys, del 2

Envariabelanalys, del 2 Envribelnlys, del 2 Toms Sjödin Dett är tänkt tt vr en smmnfttning v det jg nser vr den viktigste teorin i kursen. Ing eempel ges, och det är inte lls tänkt tt på något vis vr ett substitut för kursboken.

Läs mer