Teorifrå gor kåp

Storlek: px
Starta visningen från sidan:

Download "Teorifrå gor kåp. 5.2 9.3"

Transkript

1 Teorifrå gor kåp Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså välj som g(x) nedn vid prtiell integrtion? f(x)g(x)dx = F(x)g(x) F(x)g (x)dx 3) Iblnd är det prktiskt tt inför fktorn vid prtiell integrtion. I vilk fll? 4) Hur löser mn integrler som hr nämnrens derivt i täljren, t.ex. hos: sin x tn x dx = cos x dx = Integrtionsmetoder vribelsubstitution och hntering v rtionell uttryck 5) Kedjeregeln bklänges med hjälp v substitution Vi sk bestämm cos(x ) x dx Låt oss kll y = g(x) = x för den inre funktionen, g (x) = x för den inre funktionens derivt och f(g(x)) = f(y) = cos(y) för den yttre funktionen Vribelbyte är i dett fll en smrt lösningstktik, då den inre funktionens derivt återfinns som en fktor intill den yttre funktionen. y = x dy Efter vribelskifte [ = x ] får mn betydligt enklre: dx dy = x dx cos y dy Hitt på ytterligre någr exempel som lämpr sig särskilt br tt lös med hjälp v vribelbyte.

2 6) Vid prtilbråksuppdelning skriver mn om rtionell uttryck, till fler men enklre sådn, vilk förhoppningsvis är enklre tt finn primitiv funktion till. Efter lämplig nsts finns i huvudsk två stndrdmetoder för tt finn prtilbråken. Vilk två? 7) Nednstående nsts kn skrivs om enligt: (x )(x 4) = x B x 4 som fri term B som fri term B(x ) = x 4 x 4 x (x 4) = x B Om mn på ett smrt sätt väljer värde på x så kn respektive B bestämms. Hur? 8) När mn bestämmer primitiv funktion till en integrnd som är ett rtionellt uttryck kn prtilbråksuppdelning eller polynomdivision vr en lämplig strt. Pr ihop integrnd ( j) med förslg på strt (I X): ) b) c) d) e) f) g) h) i) j) 5x (x)(x5) x 3 (x)(x5) 3x 7 (x )(x) x4 (x) (x5) x 9 (x)(x5) x 3x5 (x )(x) (x) 3 (x5) x5 (x 4x4)(x5) 48 (x 3 6x x8)(x5) 5x 3 (x 4x4)(x 0x5) I. nsts: xb II. III. IV. nsts: nsts: nsts: V. nsts: VI. VII. VIII. IX. nsts: nsts: xb D x x (x) B x (x) x5 B x (x) x5 B x x5 B D x (x) (x) 3 x5 B D x (x) (x) 3 x5 x x B D x (x) x5 (x5) Polynomdivision först X. Polynomdivision först

3 9) Nednstående två omskrivningr kn känns långsökt men är ändå intressnt. Vrför? ) b) x 9 dx = 9 x dx = 9 9 ( x dx 3 ) 6 x dx = dx = 6 ( x 6 ) 4 ( x dx ) 4 Integrtion v trigonometrisk uttryck och rottuttryck 0) Snrlik integrnder som innehåller trigonometrisk uttryck kn kräv väldigt olik tktik när mn vill finn ders primitiv funktioner. Pr ihop ( h) med en lämplig tktik (I VIII): I. Tktik: Förlängning med cos x, trigettn, ) cos x dx b) cos x dx c) cos 3 x dx d) cos 4 x dx e) cos 5 x dx f) cos x dx g) cos x dx h) cos 3 x dx vribelbyte och prtilbråksuppdelning II. Tktik: Direkt primitiv funktion III. Tktik: Trigformel dubbl vinkeln IV. Tktik: Trigettn och vribelbyte V. Tktik: Trigformel dubbl vinkeln två ggr eller Eulers formel de Moivres formel VI. Tktik: Trigettn och vribelbyte VII. Tktik: Förlängning med cos x, trigettn, vribelbyte och prtilbråksuppdelning VIII. Tktik: Direkt primitiv funktion ) I uppgift Ö6.4 (b) sk mn beräkn dx. 54 sin x Till hjälp finner mn exempel 5.35 på sid 65 i läroboken, med det till synes långsökt vribelbytet y = tn x. Undersök hur vribelbytet dessutom ger: 4 ) dy y y y = dx b) cos x = c) sin x = y y

4 ) Vid integrtion med funktioner innehållnde trigonometrisk uttryck, kn mn med fördel let efter inre funktioner och särskilt inre derivtor. Dett för tt mn, med ett väl vlt vribelbyte, sk erhåll en integrl som är enklre tt lös. Studer följnde: e sin x sin x cos x dx Ovn kn mn med fördel välj vribelbytet y = sin x bsert på den inre funktionen. Fullfölj vribelbytet genom tt bl.. bestämm den inre derivtn dy och upptäck tt mn dx erhåller klrt enklre: e y dy 3) Repeter stndrdprimitivern (g k) i sts 5. på sid 39 i läroboken. 4) Studer de två lösningrn nedn, för beräkning v x behärsk. ) Lösningsmetod hämtd från föreläsning : y = x x x dx = dy dx = x [ dy = x dx] x y = x dx. Båd metodern är viktig tt = y dy b) Lösningsmetod hämtd föreläsning : x = sin y x x dx = dx = cos y dy [ dx = cos y dy] Bestämd integrler = sin y cos y = sin y dy sin y cos y dy = sin y dy = cos y cos y = sin y = x 5) Förklr begreppen: ) Undertrpp b) Övertrpp c) Undersumm d) Översumm

5 6) Låt funktionen f vr definierd på intervllet [, b]. Vd gäller för differensen melln undersumm och översumm om f skll vr integrerbr på dett intervll? 7) Om f(x) är integrerbr då x [, b] så finns det exkt ett tl sådnt tt följnde olikhet lltid gäller: b b undersummn = Φ n (x)dx Ψ n (x)dx = översummn Vd klls tlet och hur beteckns det? Se sts 6.. 8) Repeter räknelgrn (-e) i sts 6.. π 9) Sts 6.3 räcker ej för tt vis tt integrlen sin x dx existerr; funktionen är ej monoton 0 inom dett intervll. Vilken räknelg ur sts 6. måste sts 6.3 kompletters med? Smbnd melln integrler och derivtor 0) Nämn en tillräcklig egenskp hos en funktion f för tt den sk vr integrerbr på intervllet [, b] se sts 6.4. ) Kompletter Medelvärdesstsen för integrler (sts 6.5) med en förtydlignde figur och förklrnde text. ) Studer figur 6.9 tillhörnde nlysens huvudsts (sts 6.7). Vr i figuren finner mn (x h) respektive S(x)? Enbrt differensen S(x h) S(x) är mrkerd i figuren.

6 3) Det vckr beviset v nlysens huvudsts (Sts 6.7) innehåller hänvisningr till olik stser och definitioner vilk tidigre tgits upp. Slå upp dess i läroboken och kontroller tt du förstår vrje mellnled i denn del v beviset: Enligt derivtns S S(x h) S(x) (x) = [ definition ] = lim = lim (S(x h) S(x)) h 0 h h 0 h Definition 4. Enligt definitionen = [ v S(x) i inledningen] = lim h 0 h ( v ktuell sts xh f(t) x dt f(t) dt) Enligt räknelg = [ 6. (e) för ] = lim h 0 h integrler x ( f(t) dt xh f(t) x x dt f(t) dt) = lim h 0 h xh f(t) x dt Enligt = [ medelvärdesstsen] = lim f(ξ) ((x h) x) = lim h 0 för integrler h h 0 h f(ξ)h Tck vre = lim f(ξ) = [ instängning v ξ ] = lim f(ξ) h 0 ξ x melln x och x h Tck vre tt f = [ är kontinuerlig i x ] = f(x)

7 4) Vilk är förutsättningrn för tt insättningsformeln (sts 6.8) sk gäll? 5) Krzysztofs formel kllr vi denn formel ψ(x) d dx f(t)dt = f(ψ(x))ψ (x) f(φ(x))φ (x) φ(x) med den kontinuerlig funktionen f(t) smt deriverbr funktionern ψ(x) och φ(x) som integrtionsgränser. Denn formel är utförligre än formeln i nlysens huvudsts. På vilket sätt är denn formel extr krftfull? 6) På vilket sätt skiljer sig förutsättningrn i sts 6.9 (Prtiell integrtion) från tidigre sts 5.4? 7) Vrför är integrtionsgränsern och istället för och b i högerledet i sts 6.0? Generliserde integrler 8) Sts 6.4 säger om en funktion är kontinuerlig på ett slutet intervll så är den integrerbr på dett intervll ; kontinuitet är ett tillräckligt villkor för integrerbrhet. På vilk två sätt utvidgs dett genom införndet v generliserde integrler i definition 6.6 och 6.7? 9) En integrtionsgräns eller kn ej hnters som ett tl med hjälp v Insättningsformeln. Hur kringgår mn dett? 30) I vilk fll sägs en generliserd integrl vr divergent? 3) Iblnd måste en generliserd integrl dels upp i två eller fler integrler för tt löss, såsom i Exempel 6. och 6.3. Vrför? 3) I Exempel 6. löses br en v de två erhålln integrlern. Vrför? 33) I Exempel 6.3 löses br två v de fyr erhålln integrlern, trots konvergens. Vrför? 34) På vilket sätt nvänder mn vnligtvis 0.?

8 re och kurvlängd 35) Rit en figur och ställ upp ett uttryck för en liten re d ett litet vinkelområde lik en cirkelsektor för vidre beräkning v re innnför kurv på polär form. 36) Rit en figur och ställ upp ett uttryck för en kort delsträck ds så kort tt det blir ungefär en rätt linje för vidre beräkning v kurvlängd hos funktion f(x). 37) Rit en figur och ställ upp ett uttryck för en kort delsträck ds så kort tt det blir ungefär en rätt linje för vidre beräkning v kurvlängd hos funktion på prmeterform med vseende på t. 38) Vis tt längden v kurvn y = x då x [0, ] ges v 4x dx 0 39) Vis tt längden v kurvn y = ln(cos x) då x [0, π ] ges v 4 4 π 0 dx cos x 40) Vis tt längden v kurvn y = x 4 då x [, ] ges v 3x 4x3 6x3 dx = = ln( ) = = 93 8 Rottionskroppr 4) y = r x beskriver en hlvcirkel med centrum i origo och rdien r. Vis med en rottionskropp tt volymen hos ett klot är V = 4πr3 (se föreläsningsnteckningrn). 3 4) Tg frm formler för mntelyt och volym hos kon med höjden h och rdien r dett md hjälp v rottionskroppr (se föreläsningsnteckningrn). Intergrler och sttistik 43) Vd är en täthetsfunktion (även klld frekvensfunktion eller eng. density-function)? (se definition ) 44) En fördelningsfunktion är lltid växnde. Melln vilk funktionsvärden och vrför? (se definition 5, sts 6-7) 45) Vrför nvänder mn vnligtvis lill x i beräkningrn när mn hr vlt stor X för tt beteckn en kontinuerlig stokstisk vribel? 46) Vd är en kvntil? (se definition 0) 47) Vd är övre, mellerst respektive nedre kvrtilen? (se definition )

9 48) nge någon likhet respektive skillnd melln väntevärde och medin. 49) nge hur mn utifrån en täthetsfunktion beräknr medin respektive väntevärde för en kontinuerlig stokstisk vribel. (se definition 0 smt 4) 50) Vd är vrinsen ett mått på och hur beräknr mn den för en kontinuerlig stokstisk vribel? (se definition 8 och sts 0) 5) Vd kllr mn kvdrtroten v vrinsen? (se K0 ) 5) Vi vet tt E(X) = xf(x) dx E(X ) = x f(x) dx V(X) = (x μ) f(x) dx Vis tt: V(X) = E(X ) (E(X)) Mclurin- och Tylorutveckling 53) Nämn någr nvändningsområden för Mclurin- och Tylorutvecklingr. 54) Vd skiljer Mclurin- och Tylorutvecklingr? 55) Skiss kurvor för Mclurin-polynom v grd 0,, och 3 för f(x) = sin x. Ikttgelser? 56) Skiss kurvor för Mclurin-polynom v grd 0, och 4 för f(x) = cos x. Ikttgelser? Differentilekvtioner v ordning 57) Vd kännetecknr en differentilekvtion? 58) Vd är ordningen v en differentilekvtion? 59) Vd är lösningen v en differentilekvtion? 60) Vd är ett riktningsfält? 6) Hur tr mn frm en integrernde fktor? 6) På vilken form kn en : ordningens linjär differentilekvtion lltid skrivs? (9.4 sid 38) 63) På vilken form kn en : ordningens seprbel differentilekvtion lltid skrivs? (sid 387)

10 Differentilekvtioner v ordning 64) Blnd : ordningens differentilekvtioner tr vi inom kursen br upp de med konstnt koefficienter. Vd innebär det? 65) Sts 9. säger tt om mn hr funnit en lösning y p till en differentilekvtion : ordningens differentilekvtion med konstnt koefficienter lltså en ekvtion v typen y y by = f(x) så finner mn smtlig lösningr genom tt lägg till de mn erhåller då mn löser den?. 66) Om mn testr en nsts y = e rx (med åtföljnde y = re rx och y = r e rx ) i en homogen : ordningens differentilekvtion med konstnt koefficienter i dett fll y 4y 3y = 0 så kn mn identifier den s.k. krktäristisk ekvtionen som ger värden på r. Vis med hjälp v nstsen tt den i dett fll blir r 4r 3 = 0.

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom

Läs mer

TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips

TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips TNA004 Anlys II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 06 TNA004, Anlys II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

Projekt Analys 1 VT 2012

Projekt Analys 1 VT 2012 Mtemtikcentrum Mtemtik NF Projekt Anlys 1 VT 2012 Innehåll 1 En differentilekvtion 2 2 Epsilon och delt 4 3 Den logritmisk integrlen och primtl 6 4 Fltning och tt tämj vild funktioner 7 5 Tlet e 9 6 Anlytisk

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Kompletterande teori för Envariabelanalys del A på I

Kompletterande teori för Envariabelanalys del A på I Kompletternde teori för Envrielnlys del A på I J A S, ht-04 1 Gränsvärden 1.1 Definitioner och räkneregler Att f(x) A (går mot A) när x (går mot ) sk etyd tt värden till funktionen f sk ligg när tlet A

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

14 Trippelintegraler integration av funktioner av tre variabler

14 Trippelintegraler integration av funktioner av tre variabler Nr, 8 pril -5, Ameli Trippelintegrler integrtion v funktioner v tre vribler. Areor och volmer.. Are som enkelintegrl och som dubbelintegrl Som beknt kn enkelintegrlen R b fx)dx kn tolks som ren under fx)

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14 Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter

Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Om stationära flöden och Gauss sats i planet

Om stationära flöden och Gauss sats i planet Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Björnen och sköldpaddan Analys av en matematiskt paradoks

Björnen och sköldpaddan Analys av en matematiskt paradoks Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Föreläsningsanteckningar i analys I januari 2009

Föreläsningsanteckningar i analys I januari 2009 Föreläsningsnteckningr i nlys I jnuri 009 Pvo Slminen Görn Högnäs bsert på Protter-Morrey: A First Course in Rel Anlysis Innehåll 1 Introduktion 5 1.1 De reell tlen................................... 5

Läs mer

Råd och hjälpmedel vid teledokumentation

Råd och hjälpmedel vid teledokumentation Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Försök med vallfröblandningar Av Nilla Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsala E-post: Nilla.Nilsdotter-Linde@ffe.slu.

Försök med vallfröblandningar Av Nilla Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsala E-post: Nilla.Nilsdotter-Linde@ffe.slu. Försök med vllfröblndningr Av Nill Nilsdotter-Linde SLU, Fältforskningsenheten, Box 7043, 750 07 Uppsl E-post: Nill.Nilsdotter-Linde@ffe.slu.se Smmnfttning Målsättningen med försöksserien hr vrit tt sök

Läs mer

KLARA Manual för kemikalieregistrerare

KLARA Manual för kemikalieregistrerare KLARA Mnul för kemiklieregistrerre Version 16.4 (2015-05-08) Utrbetd v Anders Thorén och Björn Orheim Först utgåv 2002-11-01 Innehåll Introduktion 3 Vd är KLARA? 3 Systemkrv och övrig informtion 3 Vd säger

Läs mer

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp

Lösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m

Läs mer

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser

13.9.2006 Dnr 6/002/2006. Till pensionsstiftelser som bedriver tilläggspensionsskydd och är underställda lagen om pensionsstiftelser FÖRESRIFT 13.9.2006 Dnr 6/002/2006 Till pensionsstiftelser som edriver tilläggspensionsskydd och är underställd lgen om pensionsstiftelser FÖRSÄRINGSTENIS BERÄNINGR OCH DERS BERÄNINGSGRUNDER FÖR PENSIONSSTIFTELSER

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.

BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. MONTERINGSANVISNING BLÖTA BOKEN PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. 1. Läs igenom hel nvisningen innn monteringen påbörjs. 2. Kontroller produkten

Läs mer

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik

100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik 38/Thoms Munther IDE-sektionen/Högskoln i Hlmstd Formelsmling Reglerteknik Smbnd melln stegsvr och överföringsfunktion ( insignlen u är nedn ett steg med mplitud = som pplicers vid t=, där är llmänt y/

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Månadsrapport september 2013. Individ- och familjeomsorg

Månadsrapport september 2013. Individ- och familjeomsorg Måndsrpport september 2013 Individ- och fmiljeomsorg Innehållsförteckning 1 Ekonomi och verksmhet... 3 1.1 Resultt per verksmhet... 3 1.2 Volymer, sttistik och kostndsnyckeltl... 5 Individ- och fmiljeomsorg,

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen

Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen 2016-05-23 Sid 1/2 Tjänsteskrivelse Dnr: LKS 2016-235 Kommunstyrelseförvltningen Leif Schöndell, 0523-61 31 01 leif.schondell@lysekil.se Pln för lik rättigheter och möjligheter i rbetslivet uppdrg till

Läs mer

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Institutionen för naturvetenska, teknik och matematik (NAT) Institutionen för teknik och hållbar utveckling (THU) MATEMATISK FORMELSAMLING UPPLAGA 2 Innehåll Notation, mängdlära och logik........................

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

Nya regler för plåtbalkar-eurokod 3-1-5

Nya regler för plåtbalkar-eurokod 3-1-5 Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Månadsrapport juni 2014. Social- och äldrenämnden Äldre- och omsorgsavdelningen

Månadsrapport juni 2014. Social- och äldrenämnden Äldre- och omsorgsavdelningen Måndsrpport juni 2014 Socil- och äldrenämnden Äldre- och omsorgsvdelningen 1 Ekonomi och verksmhet 1.1 Resultt per verksmhet 1.1.1 Resultt juni 2014 Intäkter Kostnder Verksmhet Kom. ers. Fsg v verksm.

Läs mer

En studie av fel på tentamen i 5B1120 Introduktionskurs i matematik, 1 poäng 24/3 2005

En studie av fel på tentamen i 5B1120 Introduktionskurs i matematik, 1 poäng 24/3 2005 En studie v fel på tentmen 004-08-7 i 5B110 Introduktionskurs i mtemtik, 1 poäng 4/ 005 Mikel Cronhjort, KTH Mtemtik mikelc@mth.kth.se Inledning Denn studie utgör en del v projektet Gymnsieskolns mål och

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer,

Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, Avsnitt 6 INDUKTIVA OC DEDUKTIVA RESONEMANG Med induktion menr mn vnligen en mycket vnlig resonemngsmetod: mn gör fler observtioner, upptäcker ett mönster (eller något som mn tror är ett mönster) därefter

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 EKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och ioloi Gli Pozin enten i eknik FY6 illåtn Hjälpedel: Physics Hndbook eller efy utn en nteckninr, vprorerd räknedos enlit IFM:s reler. Forelslinen

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

EXAMENSARBETE. Modellkalibrering och läckagelokalisering för dricksvattennätet i Kalmar kommun med minsta kvadratmetoden.

EXAMENSARBETE. Modellkalibrering och läckagelokalisering för dricksvattennätet i Kalmar kommun med minsta kvadratmetoden. EXAMESARBETE 29:49 CIV Modellklibrering och läckgeloklisering för dricksvttennätet i Klmr kommun med minst kvdrtmetoden Robert Wldem Luleå teknisk universitet Civilingenjörsprogrmmet Smhällsbyggndsteknik

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

I, II, III, IV, V, VI, VII, VIII, IX, X, XI...

I, II, III, IV, V, VI, VII, VIII, IX, X, XI... Olik typer v tl Vi sk se hur vi utgående från de nturlig tlen kn konstruer de hel tlen, de rtionell tlen och de reell tlen och diskuter räknereglern som de uppfyller. Nturlig tl Vi påminner lite om nturlig

Läs mer

INNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3

INNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 INNEHALL 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 DATORER Allmänt Digitl dtorer Orgnistion Ordmm Minnesenheten Aritmetisk enheten Styrenheten In/utenheten Avbrott Spräk och proglmm

Läs mer

Stokes sats och Integralberäkning Mats Persson

Stokes sats och Integralberäkning Mats Persson Föreläsning 5/9 tokes sts och Integrlberäkning Mts Persson 1 tokes sts Först given på skrivningen för mith sk priset i februri 185 i mbridge. Bäst student J.. Mxwell). ts: Den slutn kurvn är rnden till

Läs mer

TATA42: Föreläsning 2 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 2 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 7 mrs 16 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer, men

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.

Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater. Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär

Läs mer

KOMMLIN FILIPSTADS. Fax: 0590-615 99 E-post: kommun@fi lipstad.se. Revisionsrapport angående gemensam administrativ nämnd

KOMMLIN FILIPSTADS. Fax: 0590-615 99 E-post: kommun@fi lipstad.se. Revisionsrapport angående gemensam administrativ nämnd FILIPSTADS KOMMLIN Dtum 2013-03-12 För kdnnedom: Kommunstyrelsen Kommuffillmhige Revisionsrpport ngående gemensm dministrtiv nämnd Vi hr, tillsmmns med revisorem i Kristinehmns, Krlskog och Storfors kommuner

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Studentens Ultimata Guide till Cost-Benefit-Analys

Studentens Ultimata Guide till Cost-Benefit-Analys CERE Working Pper, 2015:15 Studentens Ultimt Guide till Cost-Benefit-Anlys Per-Olov Johnsson *, Hndelshögskoln i Stockholm Krl-Gustf Löfgren *, Umeå Universitet * Centre for Environmentl nd Resource Economics

Läs mer