Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Storlek: px
Starta visningen från sidan:

Download "Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)"

Transkript

1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen av och betecknas Im( a b kallas konjugatet av och betecknas a + b kallas absolutbeloppet av och betecknas Räknelagar för absolutbelopp w w w n w + w + w n (w 0 (trangelolkheten Raden r och vnkeln θ för komplexa tal polär form och potensform: Om a + b då gäller: r a + b Om 0 då gäller: a r cosθ b r snθ En sådan vnkel kallas för argument av och betecknas arg( Talet 0 tlldelas nget argument Argument av är nte entydgt bestämd Om θär ett argument av talet då är också θ + k, talets argument för varje k 0 ±, ±,

2 Armn Hallovc: EXTRA ÖVNINGAR Låt a + b Ett värde av arg ( kan bestämmas enlgt följande: b arctan( om a > 0 a b arctan( + om a < 0 a arg om a 0, b > 0 om a 0, b < 0 ej defnerad om a 0, b 0 Om och w är två komplexa tal då gäller: arg( w arg( + arg( w ( + k arg( arg( arg( arg( w w n n arg( ( + k ( + k Uppgft a Bestäm Re w om + w b Bestäm alla lösnngar tll ekvatonen ( är ett komplext tal c Rta det komplexa tal planet mängden av alla komplexa tal som satsferar ( betecknar - konjugat d Bestäm samtlga (reella och komplexa lösnngar tll ekvatonen x x + 0 e ( Komp upp Bestäm samtlga (reella och komplexa lösnngar tll ekvatonen Lösnng: a

3 Armn Hallovc: EXTRA ÖVNINGAR w Re( w Svar a Re( w b e ( + k ( + k 00 e k 0,,,, Svar b e k 0,,,, 99 c Svar c Lösnng d Kvadratkompletterng ger ( x + 0 ( x + Om v betecknar x då har v + V substtuerar a + b och får ekv: a b ekv ab Eftersom + får v även ekv: a + b Från ekv och ekv har v a ekv ger då b Alltså +, x x + Därför har v två lösnngar: x, x +

4 Armn Hallovc: EXTRA ÖVNINGAR Lösnng e Substtuton x (* ger x + x + 0 Kvadratkompletterng ger ( x ( x + ( x + ± x + ± x ± x och x A x Från (* har v V substtuerar a + b och får a b + ab och ekv: a b 0 ekv ab Eftersom får v även ekv: a + b Från ekv och ekv har v a a och a ekv ger då b och b Alltså +, B x På lknande sätt som A får v, Svar e: +, +,, + Uppgft a Bestäm w om + w b I ekvatonen

5 Armn Hallovc: EXTRA ÖVNINGAR u + u 6 är u ett komplex tal och u talets konjugat Lös ekvatonen med avseende på u c (p Ekvatonen beskrver en rät lnje det komplexa tal planet Sätt x + y och skrv ekvatonen på formen y kx + m d ( Jämför Kompletterngskompendum upp Ekvatonen har en rent magnär rot Lös ekvatonen fullständgt Lösnng: a + w b ( x + y + ( x y 6 x + y + ( x + y 6 x + y 6 x + y 0 x, y u c x + y x + y x + ( y x + y x + x + + ( y ( x y (V kvadrerar båda leden ekvatonen + ( y ( x y x + y x y x + y y + x x + y Svar: a w b u c y x Lösnng d: Låt p, ( p reellt tal vara en rent magnär lösnng Eftersom ekvatonen har reella koeffcenter är p också en lösnng Därför är polynomet P ( delbart med ( ( ( p( + p ( + p

6 Armn Hallovc: EXTRA ÖVNINGAR 6 V betecknar p a och P ( + a För att beräkna kvoten P ( / P ( P ( v kan använda polynom dvson eller ansätta P ( + b + c och studera uttrycket P ( P ( P ( dvs ( + a( + b + c b + ( a + c + ab + ac Jämför v koeffcenter får v b, a+c 7, ab, ac 0 och a, b, c V har att ( + ( + 0,,, Svar:,,, Uppgft a Bestäm det reella talet a så att + a blr reellt b Bestäm absolutbeloppet av w då w 9 9 ( e ( + 8 c Bestäm ur ekvatonen + 0 Lösnng: a + a + a + ( a + (a Om detta tal skall vara reellt måste magnärdelen vara 0, vlket ger a + 0 d v s a / b w e ( c V substtuerar a + b, a b ekvatonen + 0 och får 6

7 Armn Hallovc: EXTRA ÖVNINGAR 7 ( a + b + ( a b 0 a b 0 Re : a 0 a Im : b b 8 Svar: a a b 0976 c + Uppgft a Bestäm magnärdelen av 89 + ( + 8 ( e ( + b Bestäm absolutbeloppet av w då w 0 c Rta det komplexa tal planet de punkter som satsferar och arg( Lösnng: 89 a + + ( Svar a Im( ( ( e ( + b w 0 Svar b w 8 Svar c 8 0 e + 8 (

8 Armn Hallovc: EXTRA ÖVNINGAR 8 Uppgft a Bestäm magnärdelen av ( e ( + b Bestäm argumentet av w då w 9 c Ekvatonen beskrver en rät lnje det komplexa talplanet Sätt y kx + m x + y och skrv ekvatonen på formen Lösnng: a + Svar a Im( Im( 6 b arg( w + ( + k Svar b arg( w 0 ( + k c Substtutonen x + y ekvatonen ger x + y x + y ( x + ( y ( x + ( y ( efter kvadrerng ( x + ( y ( x + ( y x x + + y y + x 6x y 6y + 9 y x + 6 y x + Svar c y x + Uppgft 6 a Bestäm Re(w om w + 0 ( + b I ekvatonen u + u 8 + är u ett komplex tal Lös ekvatonen med avseende på u c Bestäm och arg ( (som en reell funkton av parameter s då + ( s + 8

9 Armn Hallovc: EXTRA ÖVNINGAR 9 Lösnng a 0 w ( + + e + e Re( w b ( x y + ( x y 8 + x + y + x + y 8 + ( x y + (x + y x + y 8 x + y x + y 8 9x y 6 8x x / y x y + y x /, y / u + c + ( s + + ( s ( s + s + s + + s + s arg( arg( arg( + ( + s 0 arctan( arctan( Svar: a Re( w b + s u + c arctan( Uppgft 7 a Skssera det komplexa talplanet området som består av alla som satsferar både och arg( b Bestäm och arg ( (som en reell funkton av parameter s då + ( s +, där s år ett reellt tal Lösnng: a Svar: 9

10 Armn Hallovc: EXTRA ÖVNINGAR 0 b + ( s + + ( s + arg( arg( arg( + ( + s [eftersom Re( + ( + s > 0] + s (0 arctan( + s arctan( + s Svar: b arctan( + ( s + s + 6s + Uppgft 8 Det komplexa talet + är en lösnng tll ekvatonen + 0 Bestäm alla lösnngar Lösnng: (Ekvatonen har reella koeffcenter och + är en lösnng är också en lösnng tll ekvatonen och därför är ekvatonen delbart med ( ( ( ( + ( + Polynomdvsonen ger ( + /( + ( + dvs ( + ( + ( + Den tredje lösnngen får v ur ( + 0 Svar: +, / 0

11 Armn Hallovc: EXTRA ÖVNINGAR Uppgft 9 Det komplexa talet + är en lösnng tll ekvatonen Bestäm alla lösnngar Lösnng: (Ekvatonen har reella koeffcenter och en komplex lösnng + är också en lösnng tll ekvatonen Därför är ekvatonen delbart med ( ( ( ( + ( + + ( + 6 /( + Den tredje roten får v ur 0 Svar: +,, Uppgft 0 Bestäm alla (fyra lösnngar tll ekvatonen Svara på formen a + b Lösnng: e ( + k 6 e, k 0,,, 0 e (cos + sn ( + + e (cos + sn ( + +

12 Armn Hallovc: EXTRA ÖVNINGAR e (cos + sn ( e (cos + sn ( Uppgft Betrakta ekvatonen a Lös ekvatonen och ange alla lösnngar( st på formen b Ange alla lösnngar på formen a + b c Prcka n lösnngarna det komplexa talplanet ϕ re Lösnng: a e k ( + k e, k 0,,, Svar a k ( + k e, k 0,,, b (cos sn 0 e + (cos sn e + (cos sn e (cos sn e 7 + Svar b ± ± Svar c

13 Armn Hallovc: EXTRA ÖVNINGAR Uppgft + a (p Bestäm w om w b (p Bestäm alla lösnngar med avseende på tll ekvatonen 00 +, där är ett komplex tal c (p Lös följande ekvaton med avseende på ( där x+y är ett komplext tal + + d (p Skssera det komplexa talplanet området som består av alla som satsferar ( + Lösnng: + + a w + Svar a: w ( + k b e e k 0,,,, 99 ( + k 00 Svar b: e k 0,,,, 99 c V substtuerar x+y ekvatonen + + och får ( x + y + ( x y + x + y + x, y

14 Armn Hallovc: EXTRA ÖVNINGAR Svar c: + d Svar d: Uppgft är en lösnng tll ekvatonen Bestäm alla lösnngar Lösnng: (Ekvatonen har reella koeffcenter och är en lösnng är också en lösnng tll ekvatonen och därför är ekvatonen delbart med ( ( ( ( + + Polynomdvsonen ger ( /( Två lösnngar tll får v ur Svar: + + 0,,,,

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras

Läs mer

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H. HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer

Kompendium i Algebra grundkurs. Rikard Bøgvad

Kompendium i Algebra grundkurs. Rikard Bøgvad Kompendium i Algebra grundkurs Rikard Bøgvad Förord. Detta kompendium innehåller material till första terminens kurs i algebra vid matematiska institutionen vid Stockholms universitet, närmare bestämt

Läs mer

Inriktnings- och fördjupningskurser Design och produktutveckling

Inriktnings- och fördjupningskurser Design och produktutveckling Inriktnings- och fördjupningskurser Design och produktutveckling TE - Berzeliusskolan Centralt innehåll för inriktnings- och fördjupningskurser för Design och produktutveckling på Berzeliusskolan Mer utförlig

Läs mer

Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11

Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11 Ämnesplaner för matematik grundskolan enligt Lgr11 och gymnasieskolan enligt Gy11 I ämnesplanen för grundskolans matematik har tidigare ering markerats om det är Matematik eller en högre kurs eller momentet

Läs mer

Handlingsplan. Grön Flagg. Förskolan Trollet

Handlingsplan. Grön Flagg. Förskolan Trollet Handlngsplan Grön Flagg Förskolan Trollet Kommentar från Håll Sverge Rent 2013-06-24 14:09: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter barnens förmågor - Bra jobbat. Låt

Läs mer

Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö

Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö Inriktnings- och fördjupningskurser Samhällsbyggnad och miljö TE - Berzeliusskolan Centralt innehåll för inriktnings- och fördjupningskurser för Samhällsbyggnad och miljö på Berzeliusskolan Mer utförlig

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17 1 Inlednng Jag undervsar tyskar på folkhögskolan Nürnberg med omgvnngar. Inför uppgften att utföra en perforsanalys av en elevtext lät mna mest avancerade elever skrva en uppsats om vad de tyckte var svårt

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

Proppteori Komplement till propplektionerna

Proppteori Komplement till propplektionerna Innehåll Proppteori Komplement till propplektionerna Petter Helgesson 3 juli 0 0 Kära recce! 7 Uttryck 8 Ekvationer 8.0. Exempel: Lös ekvationen 4x = 6.......... 8. Andragradsekvationer.......................

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

HR92. 2. Kort beskrivning. 1. Leveransomfattning

HR92. 2. Kort beskrivning. 1. Leveransomfattning 2. Kort beskrvnng HR92 Trådlös termostat. Leveransomfattnng I termostatens förpacknng httar du följande: 2 3 4 2443 Termostaten HR92 är eu.bac-certferad. Honeywell HR92 är en trådlös radatortermostat med

Läs mer

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats

Läs mer

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Beslutad av kommunfullmäktge 2013-03-27, 74 Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Fnspångs kommun

Läs mer

KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL

KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL KVALITETSKRITERIER FÖR NÄTBASERADE LÄROMEDEL Arbetsgruppsrapport 16.12.2005 Duplkat 3/2006 Utbldnngsstyrelsen och författarna Tm Eja Högman ISBN 952-13-2767-7 (nb.) ISBN 952-13-2768-5 (pdf) ISSN 1237-6590

Läs mer

Förberedelse INSTALLATION INFORMATION

Förberedelse INSTALLATION INFORMATION Förberedelse 1 Materalet tll Pergo trägolv levereras med llustrerade anvsnngar. I texten nedan ger v förklarngar tll llustratonerna, som kan delas upp tre områden: Förberedelser, Läggnng och Rengörng.

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

fx-100ms fx-115ms (fx-912ms) Instruktionshäfte 2 (Ytterligare funktioner)

fx-100ms fx-115ms (fx-912ms) Instruktionshäfte 2 (Ytterligare funktioner) Sw fx-100ms fx-115ms (fx-912ms) Instruktionshäfte 2 (Ytterligare funktioner) CA 310079-001V07 http://world.casio.com/edu_e/ Viktigt! Förvara din bruksanvisning och all övrig information nära till hands

Läs mer

Lönebildningen i Sverige 1966-2009

Lönebildningen i Sverige 1966-2009 Rapport tll Fnanspoltska rådet 2008/6 Lönebldnngen Sverge 1966-2009 Andreas Westermark Uppsala unverstet De åskter som uttrycks denna rapport är författarens egna och speglar nte nödvändgtvs Fnanspoltska

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss? Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas

Läs mer

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012 Överbryggningskurs i matematik del I Teknik och Samhälle 0 Malmö 0 Förord och studietips Föreliggande kompendium i två delar är en överbryggning mellan gymnasiets och högskolans matematikkurser. Målet

Läs mer

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI) STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Enheten för Pedaggiska Mätningar PBMaE 0-05 Umeå universitet Prvtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift 0-5 Anvisningar Ttalt 0 minuter för del I ch II

Läs mer

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE

BEREDSKAP MOT ATOMOLYCKOR I SVERIGE SSI:1';74-O15 BEREDSKAP MOT ATOMOLYCKOR I SVERIGE John-Chrster Lndll Pack, 104 01 STOCKHOIJ! ;4 aprl 1974 BEREDSOP TJÖT ATOMOLYCKOR I SVERIGE Manuskrpt grundat på ett föredrag vd kärnkraftmötot Köpenhamn,

Läs mer

Ekonomihögskolan Lunds Universitet Vårterminen 2006. Priset på Poker. En studie av efterfrågeelasticiteten på Internetpoker.

Ekonomihögskolan Lunds Universitet Vårterminen 2006. Priset på Poker. En studie av efterfrågeelasticiteten på Internetpoker. Natonalekonomska Insttutonen Kanddatuppsats Ekonomhögskolan Lunds Unverstet Vårtermnen 006 Prset på Poker En stude av efterfrågeelastcteten på Internetpoker Författare Tony Krstensson Dag Larsson Handledare

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år.

AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år. Lösnngar: Akedelen Tena 4-5-5 Uppgf (4 poäng) Defnera ydlg följande begrepp a) APV och skaesköld b) IRR, som bland har lösnngar, när uppsår dessa? c) Asse Bea d) Yeld curve Se exbook and web sources. Uppgf

Läs mer

SOMMARERBJUDANDE! UPP TILL 30% RABATT Superpriser gäller t.o.m 30.07.2015. Från 2.600:- 1.964:- 2.925:- -25%

SOMMARERBJUDANDE! UPP TILL 30% RABATT Superpriser gäller t.o.m 30.07.2015. Från 2.600:- 1.964:- 2.925:- -25% SOMMARERBJUDANDE! UPP TILL 30% RABATT Superprser gäller t.o.m 30.07.2015-20 % Från 2.600:- -18 % PÅ KÖPET! Blvårdskt (värde 450:-). Vd köp för mnst 3.500:- 1.964:- ÄR DIN LEVERANTÖR MILJÖCERTIFIERAD I

Läs mer

Kommentarer till uppbyggnad av och struktur för ämnet matematik

Kommentarer till uppbyggnad av och struktur för ämnet matematik 2011-06-10 Kommentarer till uppbyggnad av och struktur för ämnet matematik Likheter och skillnader jämfört med den gamla kursplanen Ämnesplanen i gymnasieskola 2011 (Gy 2011) har en ny struktur jämfört

Läs mer

Handlingsplan. Grön Flagg. Ängens förskola

Handlingsplan. Grön Flagg. Ängens förskola Handlngsplan Grön Flagg Ängens förskola Kommentar från Håll Sverge Rent 2015-10-02 09:58: Vlka rolga och spännande utvecklngsområden som n ska jobba med. Utmana gärna barnen med att ställa öppna frågor

Läs mer

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-03-01 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

2013-04-16. Motion om bättre villkor för vissa grupper beträffande uthyrning av FaBo s lägenheter. Dnr KS 2012-400

2013-04-16. Motion om bättre villkor för vissa grupper beträffande uthyrning av FaBo s lägenheter. Dnr KS 2012-400 Utdrag ur protokoll fört vd sammanträde med kommunstyrelsens arbetsutskott Falkenberg FALKENBERG 2013-04-16 130 Moton om bättre vllkor för vssa grupper beträffande uthyrnng av FaBo s lägenheter. Dnr KS

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Handlingsplan. Grön Flagg. Berga förskola

Handlingsplan. Grön Flagg. Berga förskola Handlngsplan Grön Flagg Berga förskola Kommentar från Håll Sverge Rent 2013-12-13 09:50: Bra utvecklngsområden med aktvteter som passar barnen. Tänk på att vara medforskare och låta barnen styra. Berätta

Läs mer

Handlingsplan. Grön Flagg. Saltängens förskola

Handlingsplan. Grön Flagg. Saltängens förskola Handlngsplan Grön Flagg Saltängens förskola Kommentar från Håll Sverge Rent 2014-08-19 13:46: N har en mycket ambtös och välplanerad handlngsplan med många aktvteter som säkert kommer att skapa stort engagemang

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

A2009:004. Regional utveckling i Sverige. Flerregional integration mellan modellerna STRAGO och raps. Christer Anderstig och Marcus Sundberg

A2009:004. Regional utveckling i Sverige. Flerregional integration mellan modellerna STRAGO och raps. Christer Anderstig och Marcus Sundberg A2009:004 Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO och raps Chrster Anderstg och Marcus Sundberg Regonal utvecklng Sverge Flerregonal ntegraton mellan modellerna STRAGO

Läs mer

för alla i Landskrona

för alla i Landskrona , den 3 september LANDSKRDlHLA 2015 STAD K015/[\flUf STYRELSEN 201509 0 7 Ank. Darenr. ldossenr. Moton: Utrymme för alla Regerngen beslutade antalet maj 2008 nleda ett urbant bostadråden männskor de mest

Läs mer

Grön Flagg-rapport Ås skola 15 okt 2014

Grön Flagg-rapport Ås skola 15 okt 2014 Illustratoner: Anders Worm Grön Flagg-rapport Ås skola 15 okt 2014 Kommentar från Håll Sverge Rent 2014-10-15 09:54: N verkar ha ett mycket engagerat mljöråd som är påputtare (fnt ord). N har bra och spännande

Läs mer

Undersökning av vissa försäkringsantaganden i efterlevandepension för anställda i kommuner och landstinget och dess påverkan på prissättningen

Undersökning av vissa försäkringsantaganden i efterlevandepension för anställda i kommuner och landstinget och dess påverkan på prissättningen Matematsk statstk Stockholms unverstet Undersöknng av vssa försäkrngsantaganden efterlevandepenson för anställda kommuner och landstnget och dess påverkan på prssättnngen Ilkay Gölcük Eamensarbete 7:5

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

Handlingsplan mot hedersrelaterat våld och förtryck i skolan

Handlingsplan mot hedersrelaterat våld och förtryck i skolan Fnspångs kommuns skolkuratorer 2014-08-22 Handlngsplan mot hedersrelaterat våld och förtryck skolan Framtagen utfrån Länsstyrelsens publkatoner Om våld hederns namn & Våga göra skllnad För mer nformaton

Läs mer

Handlingsplan. Grön Flagg. Äsperedskolan förskola - skola

Handlingsplan. Grön Flagg. Äsperedskolan förskola - skola Handlngsplan Grön Flagg Äsperedskolan förskola - skola Kommentar från Håll Sverge Rent 2013-03-22 11:22: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter elevernas förmågor -

Läs mer

Matematisk Grundkurs

Matematisk Grundkurs LINKÖPINGS UNIVERSITET Matematisk Grundkurs för högskoleingenjörer inom byggnadsteknik Peter Holgersson Institutionen för teknik och naturvetenskap Sida 2 Syfte och mål Kursen syftar till att bidra till

Läs mer

Företagsrådgivning i form av Konsultcheckar. Working paper/pm

Företagsrådgivning i form av Konsultcheckar. Working paper/pm Workng paper/pm 2012:02 Företagsrådgvnng form av Konsultcheckar En effektutvärderng av konsultcheckar nom ramen för regonalt bdrag för företgsutvecklng Tllväxtanalys har uppdrag att utvärdera effekterna

Läs mer

II{FORMATIOFI TrR 1 BRF MAJROPARKE]V

II{FORMATIOFI TrR 1 BRF MAJROPARKE]V {FORMATOF TrR BRF MAJROPARKE]V ÅngTs FoRSTA MEDDELAYDE 9 l. TT STYREL.ST'TT 999-03-05.', :.. r.:;..a Årsstämman999 Tden går nu så fort att v redan är framme årsstämmotder. Årsstämman är beslutad att äga

Läs mer

Medborgarförslag om elektronisk informationsskylt på Falkhallens fasad. ( AU 164) Dnr KS 2011-165

Medborgarförslag om elektronisk informationsskylt på Falkhallens fasad. ( AU 164) Dnr KS 2011-165 Utdrag ur protokoll fört vd sammanträde med kommunstyrelsen Falkenberg 2011-06-07 171 Medborgarförslag om elektronsk nformatonsskylt på Falkhallens fasad. ( AU 164) Dnr KS 2011-165 KF Beslut Kommunstyrelsen

Läs mer

Är du lönsam lilla småhus?

Är du lönsam lilla småhus? Är du lönsam llla? Användarflexbltet och lönsamhet för fjärrvärme och, en tvärsnttsanalys Stefan Hellmer är docent ndustrell ekonom vd Högskolan Krstanstad. Hans forsknngsntresse omfattar främst studer

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-07-0 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

Varför gör vi inte som vi borde göra? Bo Mattsson Chalmers/Byggnadsekonomi

Varför gör vi inte som vi borde göra? Bo Mattsson Chalmers/Byggnadsekonomi Varför gör v nte som v borde göra? Bo Mattsson Chalmers/Byggnadsekonom Lvslängdskostnader Flerbostadshus Affärshus Kontorshus Ansk 34% Drft och underhåll 66% Ansk 48% Drft och underhåll 52% Ansk 57% Drft

Läs mer

Scandinavian Organics AB (publ) 16 30 oktober 2014

Scandinavian Organics AB (publ) 16 30 oktober 2014 l l t n a Inbjud r e t k a v a g n n teck Scandnavan Organcs AB (publ) 16 30 oktober 2014 Informatonen denna folder ( Foldern ) är endast en förenklad beskrvnng av den rktade nyemssonen (såsom defnerat

Läs mer

MRKOMNO. kóíí=ñê=ç=ãw= pfabufp=ud. aáöáí~ä=ê åíöéålîáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= pîéåëâ~

MRKOMNO. kóíí=ñê=ç=ãw= pfabufp=ud. aáöáí~ä=ê åíöéålîáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= pîéåëâ~ kóíí=ñê=ç=ãw= MRKOMNO pfabufp=ud aáöáí~ä=ê åíöéålîáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= pîéåëâ~ 0123 Denna produkt bär CE-märket överensstämmelse med bestämmelserna drektv 93/42EEC från den 14:e

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Beräkning av Sannolikheter för Utfall i Fotbollsmatcher

Beräkning av Sannolikheter för Utfall i Fotbollsmatcher Natonalekonomska Insttutonen Uppsala Unverstet Examensarbete D Författare: Phlp Jonsson Handledare: Johan Lyhagen VT 2006 Beräknng av Sannolkheter för Utfall Fotbollsmatcher Oddsen på dn sda Sammanfattnng

Läs mer

Växelström K O M P E N D I U M 2 ELEKTRO

Växelström K O M P E N D I U M 2 ELEKTRO MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM

Läs mer

Svenska BRUKSANVISNING ÖVERSIKT LADDNING BÄRA INSTÄLLNINGAR SYNKRONISERING DISPLAY AKTIVITET SÖMN MÅL PÅMINNELSER TEKNISKA DATA

Svenska BRUKSANVISNING ÖVERSIKT LADDNING BÄRA INSTÄLLNINGAR SYNKRONISERING DISPLAY AKTIVITET SÖMN MÅL PÅMINNELSER TEKNISKA DATA SVENSKA Sdan 4 Svenska BRUKSANVISNING ÖVERSIKT LADDNING BÄRA INSTÄLLNINGAR SYNKRONISERING DISPLAY AKTIVITET SÖMN MÅL PÅMINNELSER TEKNISKA DATA 6 8 10 12 16 18 20 21 22 23 24 1. ÖVERSIKT LÅDANS INNEHÅLL

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

www.olr.ccli.com Introduktion Online Rapport Din steg-för-steg guide till den nya Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduktion Online Rapport Din steg-för-steg guide till den nya Online Rapporten (OLR) Online Rapport Onlne Rapport Introdukton Onlne Rapport www.olr.ccl.com Dn steg-för-steg gude tll den nya Onlne Rapporten (OLR) Vktg nformaton tll alla kyrkor och organsatoner som har en CCLI-lcens Inga mer program som

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

En smula tropisk geometrié

En smula tropisk geometrié Normat 59:1, 1 21 (2011) 1 En smula tropisk geometrié Erwan Brugallé Université Pierre et Marie Curie, Paris 6 175 rue du Chevaleret, 75 013 Paris, France brugalle@math.jussieu.fr Vad är det egentligen

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88

Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport 09:88 Mkael Ameln, Calle Englund, Andreas Fagerberg September 2009 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport

Läs mer

;- * */- - - * * /, .*-.

;- * */- - - * * /, .*-. RAPPORT AVSEENDE FRAMTAGNING, TILLVERKNING OCH UTPROVNING AV FOKUSERANDE SÖKARE TILL IMMERSIONS- PROVNING I KÄRNKRAFTVERK SKI-projektnr B84/81 (G. 2.1/1471/81) ;- * */- - - *.*-. * /, RAPPORT AVSEENDE

Läs mer

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014

Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Illustratoner: Anders Worm Grön Flagg-rapport Pepparrotens förskola 15 aug 2014 Kommentar från Håll Sverge Rent 2014-08-15 13:51: Det är fnt att få läsa om hur n har arbetat aktvt med nflytande och delaktghet

Läs mer

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Björnligans förskola 28 maj 2013

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Björnligans förskola 28 maj 2013 Illustratoner: Anders Worm Grön Flagg-rapport Björnlgans förskola 28 maj 2013 Kommentar från Håll Sverge Rent 2013-05-28 15:18: N har jättefna blder som avspeglar er verksamhet väl och n har genomfört

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

ANN fk. Örjan Ekeberg. Strukturell Riskminimering. Kernels. Konsten att undvika att räkna högdimensionellt. Kernels

ANN fk. Örjan Ekeberg. Strukturell Riskminimering. Kernels. Konsten att undvika att räkna högdimensionellt. Kernels Kernel Methods Observaton Nästan alltng är lnjärt separerbart högdmensonella rum Vanlga lågdmensonella data kan enkelt slängas ut ett rum. Två problem uppstår. Många fra parametrar dålg generalserng. Mycket

Läs mer

FTP - förmånsbestämd l'l'an

FTP - förmånsbestämd l'l'an ~.~.;~~~..~.; '-' ;;./~~v\.:~'\~~~~.~l. Blaga 1 tll Stadgar för Försäkrngsbranschens Pensonskassa - försäkrngsförenng ;

Läs mer

Utvärdering av "Monoaxeln" 8/1-93

Utvärdering av Monoaxeln 8/1-93 Utvärderng av "Monoaxeln" 8/1-93 Vd genomgång och provkörnng av monoaxeln fann v att den fungerade som det var avsett. V märkte dock att det krävs tränng och vana för att få flyt hanterngen. Vd körnng

Läs mer

Grön Flagg-rapport Berga förskola 2 jun 2015

Grön Flagg-rapport Berga förskola 2 jun 2015 Illustratoner: Anders Worm Grön Flagg-rapport Berga förskola 2 jun 2015 Kommentar från Håll Sverge Rent 2015-06-02 13:53: Vlken jättebra rapport n skckat n tll oss. Det är härlgt att läsa hur n utvecklat

Läs mer

Framtidens Karriär Läkare

Framtidens Karriär Läkare Fokus bör lgga på att läkare får lägga merparten av sn td på uppgfter som är värdeskapande för patenterna Anna Nergårdh, chefläkare Stockholms läns landstng Framtdens Karrär Läkare Hälso- och sjukvårdens

Läs mer

Riktlinjer för biståndshandläggning

Riktlinjer för biståndshandläggning Rktlnjer för bståndshandläggnng Enlgt Socaltjänstlagen Fnspångs kommun 2012-11-19 KS 2012.04.45.730 Rktlnjer för bståndshandläggnng Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post:

Läs mer

EXAMENSARBETE. Nord Pools olika prisområden, samma marknad? Ellen Edjegul Aresh. Ekonomie magisterexamen Nationalekonomi

EXAMENSARBETE. Nord Pools olika prisområden, samma marknad? Ellen Edjegul Aresh. Ekonomie magisterexamen Nationalekonomi EXAMENSARBETE Nord Pools olka prsområden, samma marknad? Ellen Edjegul Aresh Ekonome magsterexamen Natonalekonom Luleå teknska unverstet Insttutonen för ekonom, teknk och samhälle SAMMANFATTNING Sverge

Läs mer

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM OBS! Dna högtalare (medföljer ej) kan sklja sg från de som vsas på bld denna bruksanvsnng. modell RNV70 HIFI-SYSTEM Underhåll och specfkatoner Läs bruksanvsnngen nnan du börjar använda utrustnngen. Se

Läs mer