2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H."

Transkript

1 HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna är du ensam, så det är viktigt att du klarar av uppgifterna på egen hand! Trots detta rekommenderas och uppmuntras arbete i grupp samt användning av Mathematica även där endast handräkning förväntas! I lösningsförslagen hittar du oftast både handräkning och Mathematica, detta för att du ska få träning på båda! Avsaknad av lösningsförslag eller "snåla" sådana ska tolkas positivt som en inspiration och utmana dig till att fylla igen luckor och verifiera det som är gjort. Ha teorikompendierna till hands, där finns många lösta exempel. Uppgifter Typuppgifter i första hand. Låt F 4, 3, 9,, G,,, 0, 4 och H, 0. Bestäm 9 F, 9 G, F G, F G, F H, F\G, G\H och F G\H. Lösningsförslag: Övning på mängdalgebra. Börja med att definiera mängderna för Mathematica. F 4, 3, 9, ; G,,, 0, 4 ; H, 0 ; Visst, 9 är en medlem i mängden F. MemberQ F, 9 True Visst, 9 är inte en medlem i mängden G. MemberQ G, 9 True Unionen av två mängder är en ny mängd där alla unika medlemmar i de två mängderna ingår. Mathematica tar för vana att leverera unionen sorterad. Matematiskt sett är detta inget krav. F G,, 3, 4,, 9, 0 Snittet av två mängder är en ny mängd innehållande de unika medlemmar som ingår i båda mängderna. Mathematica tar för vana att leverera snittet sorterad. Matematiskt sett är detta inget krav. F G, 4 När en mängd inte innehåller några objekt kallas den för tomma mängden och man reserverar namnet. Visst, F och H har inga gemensamma objekt så snittet är tomma mängden. F H De objekt som finns F men inte i G. Complement F, G

2 Tillämpad Matematik I, Övning HH/ITE/BN 3, 9 De objekt som finns G men inte i H. Complement G, H,, 4 De objekt som finns både i F och i den mängd som finns på raden ovanför. F Complement G, H, 4. Beräkna a n n 3 4 b k 0 k 3k c 00 i 3 Lösningsförslag: Räkna på! a) n n , 4 b) k 0 k 3k , c) 00 i st n 3, k 3k, 3 n 4 k 0, 0, i 3. Skriv med summatecken a 3 0 b Lösningsförslag: Fingerfärdighetsträning på summatecken. 0 0 i i, k k k 738 0, Beräkna 4 8 Lösningsförslag: En inledande tvåa samt en geometrisk summa , k 0 8, 8, k, k k. Visa med ett induktionsbevis att 3 n n n för alla n,, 3, Lösningsförslag: Vi ska tydligen visa den aritmetiska prototypsumman ännu en gång. Ett induktionsbevis består av tre delar. Visa först att påståendet är sant för det första n:et i följden. n VL, HL Ok Visa sedan att om det är sant för n p så är det sant även för n p. Vi får p p i i i i p Dela upp summationen p p p p p p p Om formeln gäller för n p. Faktorisera Snegla på önskat resultat och skriv om Så formeln stämmer för n p Så påståendet är sant för alla n. Färdig

3 HH/ITE/BN Tillämpad Matematik I, Övning 3 6. Visa med ett induktionsbevis att 9 n är jämnt delbart med 8 för alla n. Lösningsförslag: Ett induktionsbevis består av tre delar. Visa sant för alla n 0,,, Visa först att påståendet är sant för det första n:et i följden. n Vilket uppenbarligen är delbart med 8 Visa sedan att om det är sant för n p så är det sant även för n p. Vi får 9 p Potenslagar 9 p 9 Om 9 p delbart med 8 så k så 9 p 8k 8k 9 Hyfsa 8k k Vilket uppenbarligen är delbart med 8 Så påståendet är sant för alla n. Färdig 7. Förenkla a 3 b 6 c d Lösningsförslag: Endast, aldrig a) 3, b) 6 3 3, c) 4, d) Naturligtvis klarar Mathematica av det direkt!! Så med potenslagarna 3, 6,,,,, 8. Givet de komplexa talen 3 4 och w. Bestäm Im, Re, w, w, w, w,, w och arg w. Skriv på exponentiell form. Rita w, w. Lösningsförslag: Fingerfärdighetsträning på komplexa tal. 3 4 ; w ; Im, Re, w, w, w, w,, Abs w, Arg w 4, 3,,4 6, 0,,3 4,,Π tan Finns ingen funktion i Mathematica som direkt översätter Rektangulär form till Exponentiell form. Så man får göra på samma sätt som när man räknar för hand Abs Arg tan Skriv det komplexa talet Π på rektangulär form. Lösningsförslag: Använd Eulers definition cos sin så Π cos Π sin Π 0. Π 0. Skriv det komplexa talet Lösningsförslag: Använd exponentiell form 4 Förläng med nämnarens komplexkonjugat. 4 på rektangulär och exponentiell form, då Π Π Så w 4.

4 4 Tillämpad Matematik I, Övning HH/ITE/BN 8 4 w e Abs w Arg w 4 tan Π ComplexExpand w e 8 4. Lös ekvationen, där betyder komplexkonjugat. Lösningsförslag: Ansätt a b i ekvationen. Identifiera sedan real- och imaginärdelar. Likhet för komplexa tal ger sedan ett ekvationssystem som bestämmer a och b. a b a b Re : 3a Im : b a 3 b det vill säga ekvationen har lösningen. Solve klarar många ekvationer. 3 Solve 3 Extrauppgifter i andra hand i mån av tid. Vad blir x x x 3 x 4 om x x x 3 x 4? Lösningsförslag: Först bestämmer vi x ur villkoret x x x 3 x 4. Här gömmer sig en geometrisk summa. x x x 3 x 4 x x x x 3 x 4 xlim xn n x För att gränsvärdet ska existera krävs att x x varav x x 6, så x n 0. Alltså Så svaret på den brännande frågan om den snarlika geometriska summan x x x 3 x 4 x x x x 3 x 4 xlim x n n x 6 Vi gör en sista ängslig kontroll med hjälp av Mathematica 6 i 6 i i 3. Förenkla a 4 b 6 c 0 d Lösningsförslag: Endast, aldrig a) 4, b) 6, c) 0, d) Naturligtvis klarar Mathematica av det direkt!! Så med potenslagarna 4, 6, 0,,,,

5 HH/ITE/BN Tillämpad Matematik I, Övning 4. Givet de komplexa talen och w 3. Bestäm Im, Re, w, w, w, w,, w och arg w. Skriv på exponentiell form. Lösningsförslag: Fingerfärdighetsträning på komplexa tal. ; w 3 ; Im, Re, w, w, w, w,, Abs w, Arg w,,,,6 3, 6 3,,3, Π Finns ingen funktion i Mathematica som direkt översätter Rektangulär form till Exponentiell form. Så man får göra på samma sätt som när man räknar för hand Abs Arg tan Π. Skriv det komplexa talet Π på rektangulär form. Lösningsförslag: Använd Eulers def cos sin så Π cos Π sin Π 0. Π 6. Skriv det komplexa talet Lösningsförslag: Använd exponentiell form 6 Så _ på rektangulär och exponentiell form, då. + Förläng med nämnarens komplexkonjugat. Π Π w w e Abs w Arg w 8 tan ComplexExpand w e Lös ekvationen, där betyder komplexkonjugat. Lösningsförslag: Ansätt a b i ekvationen. Identifiera sedan real- och imaginärdelar. Likhet för komplexa tal ger sedan ett ekvationssystem som bestämmer a och b. a b a b Re : a 0 Im : 3b a 0 b 3 det vill säga ekvationen har lösningen. Solve klarar många ekvationer. 3 Solve

6 6 Tillämpad Matematik I, Övning HH/ITE/BN 3 8. Visa med ett induktionsbevis att 3 n n är jämnt delbart med 7 för alla n. Lösningsförslag: Ett induktionsbevis består av tre delar. Visa sant för alla n 0,,, Visa först att påståendet är sant för det första n:et i följden. n Vilket uppenbarligen är delbart med 7 Visa sedan att om det är sant för n p så är det sant även för n p. Vi får 3 p p Meka om exponenterna 3 p p Potenslagar 3 p 3 p Om 3 p p delbart med 7 så k så 3 p p 7k 7k p 3 p Hyfsa 7k 9 7 p 7 9k p Vilket uppenbarligen är delbart med 7 Så påståendet är sant för alla n. Färdig Fördjupningsuppgifter i tredje hand eller inte alls 9. För det komplexa talet gäller att Re. Vilka värden kan Re anta? Lösningsförslag: Vi mekar ihop ett b enligt receptet, så f b Re Re Re b b Re b b b b b varav D f, och svaret på frågan V f 0,. Plot, b, 0, 0, PlotRange All, AxesLabel "b" b b 0. Antag att a b. Åskådliggör geometriskt a b c d Lösningsförslag: Rita och diskutera med dina kamrater!. Åskådliggör geometriskt de punkter som uppfyller a b c d Lösningsförslag: Rita och diskutera med dina kamrater!. Visa att avståndet mellan punkterna och i det komplexa talplanet är. Lösningsförslag: Rita, räkna och diskutera med dina kamrater! 3. Visa att följande samband är sant för alla. a Re b Im c Re Lösningsförslag: Räkna och diskutera med dina kamrater! 4. Låt a b ligga i rektangeln 0 a a a,0 b b b i det komplexa talplanet. Vilken form får rektangeln efter transformationen? Lösningsförslag: Rita, räkna och diskutera med dina kamrater!

7 HH/ITE/BN Tillämpad Matematik I, Övning 7 n. Visa att k k n n n. 6 Lösningsförslag: Gör ett induktionsbevis och diskutera med dina kamrater! 6. Visa att för alla heltal n,, gäller n n. Lösningsförslag: Gör ett induktionsbevis och diskutera med dina kamrater!

Tillämpad Matematik I Övning 1

Tillämpad Matematik I Övning 1 HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Tillämpad Matematik I Övning 3

Tillämpad Matematik I Övning 3 HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Tillämpad Matematik II Övning 2

Tillämpad Matematik II Övning 2 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Matematisk Modellering Övning 2

Matematisk Modellering Övning 2 HH/IDE/BN Matematisk Modellering, Övning 2 Matematisk Modellering Övning 2 Allmänt Övningsuppgifterna är eempel på uppgifter, eller delar av uppgifter, du kommer att möta på tentamen. Undantag utgör naturligtvis

Läs mer

1 Talteori. Det här kapitlet inleder vi med att ta

1 Talteori. Det här kapitlet inleder vi med att ta 1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

IX Diskret matematik

IX Diskret matematik Lösning till tentamen 101213 IX1500 - Diskret matematik 1 Betrakta det finska ordet m a t e m a t i i k k a. Hur många arrangemang av bokstäverna i detta ord innehåller varken orden matematik eller matte?

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1 1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a +

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

Diagnostiskt test för Lp03

Diagnostiskt test för Lp03 Diagnostiskt test för Lp --6, kl. 9.5 Inga miniräknare/formelsamlingar. Redovisa dina resonemang/räkningar.. Skriv namn, vilket år du senast läste matematik, vilken kurs det var, vilket betyg du fick..

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Repetition ekvationer - Matematik 1

Repetition ekvationer - Matematik 1 Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Diskret matematik, lektion 2

Diskret matematik, lektion 2 Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1 Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Här presenteras förslag på lösningar oc tips till många uppgifter i läroboken Matematik 000 kurs C Komvu som vi oppas kommer att

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Läsanvisningar till kapitel Komplexa tals algebraiska struktur

Läsanvisningar till kapitel Komplexa tals algebraiska struktur Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

vilket är intervallet (0, ).

vilket är intervallet (0, ). Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.

Läs mer

Tentamen i Matematik, del B, för Tekniskt basår

Tentamen i Matematik, del B, för Tekniskt basår Tentamen i Matematik, del B, för Tekniskt basår Kurskod: MVE45 B Telefonvakt: tel. Datum: 4 augusti 016 Tid för tentamen: 14.00-18.00 Hjälpmedel: Inga Betygsgränser: Betyg : 0-1, Betyg 4: - 41, Betyg 5:

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Talteori. 1 Grundbegrepp och kongruenser...1 2 Talföljder och rekursion 6 3 Induktionsbevis..14 4 Fraktaler.16 Facit.. 18

Talteori. 1 Grundbegrepp och kongruenser...1 2 Talföljder och rekursion 6 3 Induktionsbevis..14 4 Fraktaler.16 Facit.. 18 Talteori Von Kochs kurva, även känd som snöflingekurvan, först beskriven av Helge von Koch (1904). Kochkurvan är en kurva som saknar tangent i alla punkter. Numera även känd för att vara en av de först

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Matematik 5 Kap 2 Diskret matematik II

Matematik 5 Kap 2 Diskret matematik II Matematik 5 Kap 2 Diskret matematik II Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Extra övningsuppgifter till kapitel /

Extra övningsuppgifter till kapitel / Etra övningsuppgifter till kapitel - i Matematik för ingenjörer Etra övningsuppgifter till kapitel - 8/ 000. Skriv följande periodiska decimaltal på bråkform. (a).6666... (b) 0.666... (c) 0.... Förenkla

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6 freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

TATM79: Föreläsning 8 Arcusfunktioner

TATM79: Föreläsning 8 Arcusfunktioner TATM9: Föreläsning 8 Arcusfunktioner Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det inte att hitta en invers

Läs mer

Matematik 2b 1 Uttryck och ekvationer

Matematik 2b 1 Uttryck och ekvationer Matematik 2b 1 Uttryck och ekvationer Repetera grunderna i ekvationslösning Lära dig parentesmultiplikation, kvadreringsreglerna och konjugatregeln Lära dig lösa fullständiga andragradsekvationer Få en

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer