Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)"

Transkript

1 Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd med resstansen R ohm, en kondensator med kaactansen farad och en sännngskälla med sännngen U( vol För att ange en dfferental ekvaton för använder v otentalvandrng (dvs Krchhoffs sännngslag) och följande samband: Sännngsfallet över en sole med nduktansen L är lka med L ( eller kortare U L = L ( (*) Sännngsfallet över ett motstånd med resstansen R är lka med R eller kortare U R = R (**) Sännngsfallet över en kondensator med kaactansen är lka med q ( /, dvs U = (***) där q ( = och är laddnngen coulomb Enlgt Krchhoffs sännngslag (eller "otentalvandrng") gäller då U( = 0 eller U L R L U R + U = + U( (ekv) (I denna enkla krets är alltså summan av sännngsfall = sännngskälla ) Om v substtuerar (*), (**) och (***) ekv får v följande grundekvaton för LR krets: L ( + R (ekvaton A) Ekvaton A har två okända funktoner ( och q ( För att lösa ekvatonen måste v först elmnera en av dem med hjäl av sambandet q ( = Följande två metoder är ekvvalenta: Metod Om v vll elmnera q ( derverar v ekvaton A och därefter ersätter q ( = V får följande ekvaton med endast en varabel ( L ( + R ( + = U ( ( ekvaton B) (notera dervatan U ( högra lede Sda av 7

2 Tllämnngar av dfferentalekvatoner, LR kretsar Metod Om v vll elmnera ( ekvaton A v substtuerar ( ( och ( ( ekvatonen och får V får följande ekvaton med endast en varabel ( : L q ( + R q ( (ekvaton ) ( notera att U( nte derveras den här metoden) V bestämmer först och därefter ( ( Begynnelsevllkor: Om v har en andragrads DE behöver v två vllkor för att bestemma konstanter den allmänna lösnngen Följande startvllkor en LR krets används oftast: ( 0) = a och q ( 0) = b I detta fall har v q ( 0) = 0) = a och då är enklast att använda (ekvaton ) och bestämma q ( Därefter får v ( ( q ( 0) = a och q ( 0) = b I detta fall är det naturlgt att använda ( ekvaton ) ( 0) = a och ( 0) = b I detta fall är det lämlgt att använda ( ekvaton B) Secella fall: LR krets Från U ( L R = 0 dvs U L + U R = U( får v L ( + R = U( Notera att ekvatonen är av första ordnngen och att det räcker med ett vllkor Här används oftast vllkoret ( 0) = a R krets R krets beskrvs med R Med hjäl av ( ( elmnera en obekant funkton Om v t ex elmnerar ( har v R q ( Sda av 7

3 Tllämnngar av dfferentalekvatoner, LR kretsar Övnngsugfter Ugft Bestäm strömmen nedanstående LR- krets om a) L= henry, R= 8 ohm, u( = volt Vd t=0 är strömmen 0)=0 amere b) L= henry, R= 8 ohm, u( a) Från kretsen får v följande dff ekv d L + R (ekv) ( efter subst L och R) ( + 8 = ( dela med ) ( + 4 = 6 (ekv ) Härav H ( = e = e V och 0)=0 A Partkulärlösnng : ( = A ( = 0 4A = 6 ( = / A = / Alltså: = H ( + ( = e + För att bestämma använder v begynnelsevllkoren ( 0) = 0 och får = e + = och ( ) 4 t t = e + Svar a) ( = Svar b) = e e 4 t + + e Sda av 7

4 4 Tllämnngar av dfferentalekvatoner, LR kretsar Ugft Bestäm strömmen nedanstående R krets där R= Ω, = F u( = 4 V då 0 a) vd t=0 är strömmen 0)= A b b) vd t=0 är laddnngen 0)= coulomb a) Från kretsen får v följande dff ekv R + (ekv) eller ( efter subst R och ) ( + 0 = 4 (ekv) För att elmnera q ( derverar v ( ekv ) och ( eftersom q ' ( = ) får: ( + 0 = 0 (ekv ) Härav 0t = e (*) [ den allmänna lösnngen för ] För att bestämma använder v begynnelsevllkoren ( 0) = och får därmed = e = 0t 0t Svar a) = e ( amere) b) V använder vllkoret 0)= och den allmänna lösnngen från a-delen För att bestämma 0) substtuerar v 0)= ekv och får ( 0) + 0 = 4 0) = 4 Nu fortsätter v som a-delen, med den nya vllkoret för 0)=4 och får 4 = 0t Därför 0t Svar b) (amere) 0t = e Ugft Bestäm strömmen nedanstående LR krets om Sda 4 av 7

5 5 Tllämnngar av dfferentalekvatoner, LR kretsar L= H, R= Ω, R= Ω, = F och u(=0v 6 Vd t=0 är strömmen 0)=0 A och laddnngen q ( 0) = Från kretsen får v följande dff ekv d L + R + R + dvs d L + ( R + R ) + (ekv) (efter subst L, R och ) ( = 0 (ekv ) 0)=0 och 0) = ger (0) + 50) + 60) = 0 (0) + 6 = 0 (0) = 4 Derverng av ( ekv ) ger: ( + 5 ( + 6 = 0 (ekv ) t Härav = e + e Alltså: t = e + e medför t ( = e e För att bestämma och använder v begynnelsevllkoren ( 0) = 0 och ( 0) = 4 och får + = 0 4 = Härav 4, = 4 och därför Svar: = t 4e 4e t Ugft4 Bestäm strömmen nedanstående LR krets om L= H, R= Ω, R= Ω, = F och u ( = sn( + 6cos( V, Sda 5 av 7

6 då 0)=4 A och ( 0) = 6 Tllämnngar av dfferentalekvatoner, LR kretsar Från kretsen får v följande dff ekv d L + R + R + dvs d L + ( R + R ) + ( efter subst L, R och ) ( + + = sn( + 6cos( Derverng ger: ( + ( + = 44 cos( sn( Härav H ( t = e + e Partkulär lösnng: = Asn t + B cos t 6A B = 44 A 6B = A = 6, B = 4 ( = 6sn t + 4 cos t Alltså: = e + e 6sn t + 4 cos t För att bestämma och använder v begynnelsevllkoren ( 0) = 4 och ( 0) = och får = 5, 5 = = 5e 5e 6sn t + 4cost Svar: = 5e 5e 6sn t + 4cost Ugft 5 Bestäm strömmen och laddnngen nedanstående LR krets om L= henry, R= ohm, = farad och Sda 6 av 7

7 u( = sn t + cost volt då 0)=0 amere och 0)= coulomb 7 Tllämnngar av dfferentalekvatoner, LR kretsar ( Bedömnng för u6: korrekt ställd ekvaton ; korrekt lösnng för den allmänna ekvatonen ; korrekt lösnng för begynnelsevärdesroblemet ) Från kretsen får v följande dff ekv d L + R + = U (ekv) Om v använder q ( = då får v följande ekvaton med en varabel: L q ( + R q ( + = U, ( efter subst L, R och ) q ( + q ( + = sn t + cost (ekv ) Ekvatonen har den allmänna lösnngen = e + e + sn t Eftersom q ( = får v = e e + cost Från begynnelsevllkoren 0)=0 och 0) = får v ekv: + = 0 ekv: + = Härav = och = 0 och därför = e + cost t och = e + sn t Svar: = e + cost t = e + sn t Sda 7 av 7

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Inledning och Definitioner

Inledning och Definitioner Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

1 Grundläggande Ellära

1 Grundläggande Ellära 1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och

Läs mer

Elektriska komponenter och kretsar. Emma Björk

Elektriska komponenter och kretsar. Emma Björk Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej

Läs mer

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen 0/4/04 :4 Dagens föreläsnng Repetton kretselement och samband Tvåpolssatsen TST0 lektronk ffektanpassnng Operatonsförstärkaren (nför labb ) Nodanalys Föreläsnng Kent Palmkvst S, SY 3 Praktska saker Repetton,

Läs mer

i = 1. (1.2) (1.3) eller som z = x + yi

i = 1. (1.2) (1.3) eller som z = x + yi Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Elektronik grundkurs Laboration 1 Mätteknik

Elektronik grundkurs Laboration 1 Mätteknik Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

5. Kretsmodell för likströmsmaskinen som även inkluderar lindningen resistans RA.

5. Kretsmodell för likströmsmaskinen som även inkluderar lindningen resistans RA. Föreläsning 1 Likströmsmaskinen och likström (test). 1. Modell och verklighet. 2. Moment och ström (M&IA). Momentkonstanten K2Ф. 3. Varvtal och inducerad spänning (ω&ua). Spänningskonstanten K2Ф. 4. Momentkonstant

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

Introduktion till modifierad nodanalys

Introduktion till modifierad nodanalys Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad

Läs mer

Blinkande LED med 555:an, två typkopplingar.

Blinkande LED med 555:an, två typkopplingar. Blinkande LED med 555:an, två typkopplingar. När vi börjar att koppla med lysdioder, är det kul att prova lite ljuseffekter. En sådan effekt är olika blinkande lysdioder. Det finns flera möjligheter att

Läs mer

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock Moment 2 - gtal elektronk Föreläsnng 2 Sekvenskretsar och byggblock Jan Thm 29-3-5 Jan Thm F2: Sekvenskretsar och byggblock Innehåll: Sekvenser Latchar och vppor Regster Introdukton - byggblock Kodare

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen F Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LB Tvåpol mät och sim F/Ö8 F/Ö9 KK

Läs mer

PROV ELLÄRA 27 oktober 2011

PROV ELLÄRA 27 oktober 2011 PRO EÄR 27 oktober 2011 Tips för att det ska gå bra på provet. Skriv ÖSNINGR på uppgifterna, glöm inte ENHETER och skriv lämpligt antal ÄRDESIFFROR. ycka till! Max 27p G 15p 1. (addning - G) Två laddningar

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

Andra ordningens kretsar

Andra ordningens kretsar Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010 Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen

Läs mer

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Extrauppgifter Elektricitet

Extrauppgifter Elektricitet Extrauppgifter Elektricitet 701 a) Strömmen genom en ledning är 2,50 A Hur många elektroner passerar varje sekund genom ett tvärsnitt av ledningen? b) I en blixt kan strömmen vara 20 ka och pågå i 0,90

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Mätfelsbehandling. Medelvärde och standardavvikelse

Mätfelsbehandling. Medelvärde och standardavvikelse Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen F1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av U och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8

Läs mer

6. Likströmskretsar. 6.1 Elektrisk ström, I

6. Likströmskretsar. 6.1 Elektrisk ström, I 6. Likströmskretsar 6.1 Elektrisk ström, I Elektrisk ström har definierats som laddade partiklars rörelse mer specifikt som den laddningsmängd som rör sig genom en area på en viss tid. Elström kan bestå

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

N A T U R V Å R D S V E R K E T

N A T U R V Å R D S V E R K E T 5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

Härled uttrycken för flänsverkningsgraderna η och ϕ. 15. För rektangulära och triangulära flänsar gäller för en s.k.

Härled uttrycken för flänsverkningsgraderna η och ϕ. 15. För rektangulära och triangulära flänsar gäller för en s.k. EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 03 VÄRMEÖVERFÖRING KAP 9,, Värmelednng och forcerad konvekton a) Vad menas med ett sotropt materal? b) Vad menas med ett homogent materal? Defnera termska dffusvteten

Läs mer

REGERINGSRÄTTENS DOM

REGERINGSRÄTTENS DOM REGERINGSRÄTTENS DOM 1(2) Mål nr 5679-10 meddelad Stockholm den 22 oktober 2010 KLAGANDE Folkfronten, 802444-5721 Ombud: Jur. kand. Benjamn Boman Blästadsgatan 34 589 23 Lnköpng ÖVERKLAGAT AVGÖRANDE Kammarrätten

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

4. Elektromagnetisk svängningskrets

4. Elektromagnetisk svängningskrets 4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens

Läs mer

Elektronik. Inledning. Översikt. Varför elektricitet? Genast ett exempel

Elektronik. Inledning. Översikt. Varför elektricitet? Genast ett exempel Elekronk Öersk Inlednng Pero Andrean Insuonen för elekro- och nformaonseknk Lunds unerse Sröm, spännng, energ, effek Krchhoffs srömlag och spännngslag (KCL och KVL) Serekopplngar och parallellkopplngar

Läs mer

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Kortfattat lösningsförslag Fysik A, Tentamensdatum:

Kortfattat lösningsförslag Fysik A, Tentamensdatum: Kortfattat lösningsförslag Fsik, Tentamensdatum: 06011 1. Lösning: För att räkna ut den totala kraft som verkar på kan vi använda superposition. F C F res r =,0 mm B α r =,0 mm C F B Riktningen på kraften

Läs mer

Spolen och Kondensatorn motverkar förändringar

Spolen och Kondensatorn motverkar förändringar Spolen och Kondensatorn motverkar förändringar Spolen och kondensatorn motverkar förändringar, tex vid inkoppling eller urkoppling av en källa till en krets. Hur går det då om källan avger en sinusformad

Läs mer

Sammanfattning. ETIA01 Elektronik för D

Sammanfattning. ETIA01 Elektronik för D Sammanfattning ETIA01 Elektronik för D Definitioner Definitioner: Laddningsmängd q mäts i Coulomb [C]. Energi E ( w ) mäts i enheten Joule [J]. Spänning u ( v ) är hur mycket energi (i Joule) som överförs

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Kretselement på grafisk form

Kretselement på grafisk form Kretselement på grafisk form Med här använda riktnings- och polaritetsdefinitioner tar elementen emot effekt när U och I är positiva. (Emk och Strömgenerator under laddning ) Tvåpol med emk och resistans

Läs mer

Ellära. Lars-Erik Cederlöf

Ellära. Lars-Erik Cederlöf Ellära LarsErik Cederlöf Elektricitet Elektricitet bygger på elektronens negativa laddning och protonens positiva laddning. nderskott av elektroner ger positiv laddning. Överskott av elektroner ger negativ

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

Allmän symbol för diod. Ledriktning. Alternativ symbol för en ideal diod.

Allmän symbol för diod. Ledriktning. Alternativ symbol för en ideal diod. 14BDioder Den ideala dioden. En stor och viktig grupp av halvledarkomponenter utgör dioderna, som kännetecknas av att de har vad man kallar ventilverkan. De uppvisar låg resistans för ström i den ena riktningen,

Läs mer

Motstånd med 5 eller 6 ringar Serie E48 och E96 Med 1:a ringen brun = 1

Motstånd med 5 eller 6 ringar Serie E48 och E96 Med 1:a ringen brun = 1 Motstånd med eller ringar Serie E och Med :a ringen brun = Nedan visas motstånd med % tolerans (=) dvs te ringen brun. För % tolerans (E) skall femte ringen istället vara röd. -e ringen visas ej. Anger

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Tentamen i Elektronik för E, 8 januari 2010

Tentamen i Elektronik för E, 8 januari 2010 Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans. Föreläsning 3 20071105 Lambda CEL205 Analoga System Genomgång av operationsförstärkarens egenskaper. Utdelat material: Några sidor ur datablad för LT1014 LT1013. Sidorna 1,2,3 och 8. Hela dokumentet (

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Linköpings Universitet Institutionen för datavetenskap (IDA) UPP-gruppen Arv och polymorfi

Linköpings Universitet Institutionen för datavetenskap (IDA) UPP-gruppen Arv och polymorfi Linköpings Universitet Institutionen för datavetenskap (IDA) UPP-gruppen 2017-01-16 Mål Arv och polymorfi I denna laboration ska du skapa ett objektorienterat program som använder arv, polymorfi och flera

Läs mer

Laboration II Elektronik

Laboration II Elektronik 817/Thomas Munther IDE-sektionen Halmstad Högskola Laboration II Elektronik Transistor- och diodkopplingar Switchande dioder, D1N4148 Zenerdiod, BZX55/C3V3, BZX55/C9V1 Lysdioder, Grön, Gul, Röd, Vit och

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 5

Ellära och Elektronik Moment AC-nät Föreläsning 5 Ellära och Elektronik Moment A-nät Föreläsning 5 Visardiagram Impendans jω-metoden Komplex effekt, effekttriangeln Visardiagram Om man tar projektionen på y- axeln av en roterande visare får man en sinusformad

Läs mer

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM OBS! Dna högtalare (medföljer ej) kan sklja sg från de som vsas på bld denna bruksanvsnng. modell RNV70 HIFI-SYSTEM Underhåll och specfkatoner Läs bruksanvsnngen nnan du börjar använda utrustnngen. Se

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström

Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström Relation mellan ström och spänning i R, L och C. RLC-krets Elektrisk oscillator, RLC-krets

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Lab nr Elinstallation, begränsad behörighet ET1013 Likströmskretsar

Lab nr Elinstallation, begränsad behörighet ET1013 Likströmskretsar Laborationsrapport Kurs Elinstallation, begränsad behörighet ET1013 Lab nr 1 version 2.1 Laborationens namn Likströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Noggrannhet vid beräkningar Anvisningar

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer