TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

Storlek: px
Starta visningen från sidan:

Download "TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000"

Transkript

1 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels. Lärare: Armn Hallovc Denna enamensla får ej behållas efer enamensllfälle uan lämnas n llsammans med läsnngar. Poängfördelnng och beygsgränser: Tenamen besår av 8 ugfer á 4 och ger mamal oäng. Beygsgränser: För beyg A, B, C, D, E krävs 0, 4, 0, 6 resekve oäng. Komleerng: 0 oäng å enamen ger rä ll komleerng (beyg F). Vem som har rä ll komleerng framgår av beyge F å MINA SIDOR. Komleerng sker c:a vå veckor efer a enamen är räad. Om komleerng är godkänd raoreras beyg E, annars raoreras F. Ugf. (4 oäng) a) () Besäm den magnära delen Im(z) om z = ( ) 4 6. b) () Besäm alla lösnngar med avseende å z ll ekvaonen z =, 50 där z är e komle al. c) () Ra de komlea allane den kurva som defneras av z = z Lednng: Sä z = y och förenkla ekvaonen. Ugf. ( 4 oäng) Besäm alla lösnngar då 5z z 0z = 0. z = är en lösnng ll ekvaonen Var god vänd.

2 Ugf. ( 4 oäng) a ) () Lös följande dfferenalekvaon (y ) y = (y )( y )( 5). b) () Ange lösnngen å elc form. c) () Besäm även evenuella sngulära lösnngar. Ugf 4. ( 4 oäng) Besäm den lösnng ll följande dfferenalekvaon ( ( =, > 0 som sasferar vllkore ( ) =. Ugf 5. ( 4 oäng) Lös följande dfferenalekvaoner med avseende å y () a) () y 6 y 5y = 0 7 b) () y y 5y = 8 c) () y y = (resonansfall ). Ugf 6. (4 oäng) Besäm srömmen ( nedansående LRC kres om L= henry, R= ohm, C= farad och u( = e vol då (0)=0 amere och ( 0) = amere/s. Var god vänd.

3 Ugf 7. 7a)( oäng) Säll u e ekvaonssysem med se ekvaoner för nedansående nä, med avseende å srömmarna (, (, (, 4 ( och 5 ( and laddnngen q ( ( den sjäe ekvaonen är e samband mellan q ( och ( ). Du behöver ne lösa syseme! 7b) ( oäng) I ankar A och B fnns 00 ler resekve 00 ler salvaen som nnehåller, 80g, resekve 90 g sal. Tanken A llförs 0 ler vaen er mnu som nnehåller 4 gram sal er ler. Vaen blandas ordenlg och 5 ler förs ll B och därefer 5 ler från B förs ll A och 0 ler rnner u, enlg blden nedan. Lå (,y( beeckna salmängden ( gram) A, B vd dsmomen. Säll u e ekvaonssysem för ( och y( och ange begynnelsevllkor. Du behöver ne lösa syseme! Ugf 8. ( 4 oäng) Använd subsuonen z ( ) = sn( y( )) för a lösa följande (cke-lnjära) ekvaon an( y) y = cos( y) π med avseende å y(), v anar a 0 < y ( ) <. Lycka ll!

4 Fac: Ugf. (4 oäng) a) () Besäm den magnära delen Im(z) om z = ( ) 4 6. b) () Besäm alla lösnngar med avseende å z ll ekvaonen z =, 50 där z är e komle al. c) () Ra de komlea allane den kurva som defneras av z = z Lednng: Sä z = y och förenkla ekvaonen. 6 a) z = ( ) 4. Efersom ( ) = = = = 4 = 4( ) = 4() ( ) = 4, = = = =, 6 7 har v z = ( ) 4 = 4 =. Därför Im(z)=. Svar a: Im(z)=. π π ( kπ ) b) z = e z = e k = 0,,,..., 49 k π ( kπ ) 4 50 Svar b: zk = e k = 0,,,..., 49 c) z y = = y = y z y y = 4 = 4 och - y = 0 = och y = 0 z = z Alernav lösnng: = z = z z = 4 z = z Svar c: Endas en unk z = sasferar ekvaonen (se blden ovan).

5 Ugf. ( 4 oäng) Besäm alla lösnngar då 5z z 0z = 0. z = är en lösnng ll ekvaonen (Ekvaonen har reella koeffcener och z = är en lösnng ) z = är också en lösnng ll ekvaonen och därför är ekvaonen delbar med ( z z )( z z ) = ( z )( z ) = z 4 = z 4. Polynomdvsonen ger (5z z 0z ) /( z 4) = 5z En lösnng får v ur 5z = 0 z = 5 Svar: z =, z =, z = 5 Ugf. ( 4 oäng) a ) () Lös följande dfferenalekvaon (y ) y = (y )( y )( 5). b) () Ange lösnngen å elc form. c) () Besäm även evenuella sngulära lösnngar. a) (y ) y = (y )( y )( 5). ( Anmärknng: V kan dela ekvaonen med (y )( y ) om urycke är skl från 0. Urycke (y )( y ) är 0 om y = /.Subsuonen y = /, y = 0 ekvaonen vsar a den konsana funkonen y = / är också en lösnng. En sådan lösnng kallas sngulär om den ne kan fås ur den allmänna lösnngen.) Om y / har v y dy dy = 5 = ( 5) d = ( 5) d y y y arcan y = 5 C ( den allmänna lösnngen å mlcform). b) V löser u y och får: arcan y = ( 5 C) y = an( 5 C) y = an( 5 C) ( den allmänna lösnngen å elcform). c) Oavse hur v väljer konsanen C den allmänna lösnngen kan v INTE få den konsana lösnngen y = /. Därför är lösnngen y = / en SINGULÄR lösnng ll ekvaonen.

6 Ugf 4. ( 4 oäng) Besäm den lösnng ll följande dfferenalekvaon ( ( =, > 0 som sasferar vllkore ( ) =. V använder formeln ( = e P( d ( C Q( e P( d d Förs beräknar v P( d = d = ln = ln ( anagande >0) Formeln ger ( = ln ln e ( C ( ) e d = ( C ( ) d = ( C ( ) d = ( C ln = C ln Vllkore ( ) = ger C 0 = C = och därför ( = ln Svar: ( = ln Ugf 5. ( 4 oäng) Lös följande dfferenalekvaoner med avseende å y () a) () y 6 y 5y = 0 7 b) () y y 5y = 8 c) () y y = (resonansfall ). 5 Svar a: y( ) = C e C e Svar b: y ( ) = C e sn Ce cos Lösnng c: Den karakersska ekvaonen: r r = 0 r( r ) = 0 r = 0, r = och därför har v homogena delen: YH = C Ce Ansas: y = ( A B) y = ( A B) y = (A B) y = A Subsuonen ekvaonen y y = ger A A B =, 8 5

7 Härav A=, B=0 och därför Svar c: y = C Ce y = Ugf 6. (4 oäng) Besäm srömmen ( nedansående LRC kres om L= henry, R= ohm, C= farad och u( = e vol då (0)=0 amere och ( 0) = amere/s. Från kresen får v följande dff. ekv. d( L R ( q( = U d C V derverar ekvaonen och subsuerar ( = q ( och får L ( R ( ( = U C ( ( ( = e (ekv ) Härav H ( = C e Parkulärlösnng : ( = Ae ( = 4Ae ( = 6Ae C e Subsuon ekv. ger 6Ae ( 4Ae ) Ae 6Ae = e A = ( = e = e Härav: ( = Ce Ce e ( och ( = Ce Ce 8e ) Begynnelse vllkoren: (0)= 0 och ( 0) = ger C C = 0 och C C 8 =. Därför

8 C = och C = 5. Allså ( = e 5e e Svar: Ugf 7. ( = e 5e e 7a)( oäng) Säll u e ekvaonssysem med se ekvaoner för nedansående nä, med avseende å srömmarna, (, (, ( och ( ) and laddnngen q ( ( den sjäe ( 4 5 q ( och ( ekvaonen är e samband mellan ) Du behöver ne lösa syseme! ). Svar a: ekv: ( = ( ( ekv: ( = 4( 5 ( ekv: L ( R ( R ( L ( = u( ekv4: q( R ( R44 ( R ( = 0 C ekv5: L 5( R44 ( = 0 ekv5: q ( ) ( ) 7b) ( oäng) I ankar A och B fnns 00 ler resekve 00 ler salvaen som nnehåller, 80g, resekve 90 g sal. Tanken A llförs 0 ler vaen er mnu som nnehåller 4 gram sal er ler. Vaen blandas ordenlg och 5 ler förs ll B och därefer 5 ler från B förs ll A och 0 ler rnner u, enlg blden nedan. Lå (,y( beeckna salmängden ( gram) A, B vd dsmomen. Säll u e ekvaonssysem för ( och y( och ange begynnelsevllkor. Du behöver ne lösa syseme!

9 Svar: y( ( ( = ( y( y( y ( = Begynnelsevllkor: ( 0) = 80, y ( 0) = 90 Ugf 8. ( 4 oäng) Använd subsuonen z ( ) = sn( y( )) för a lösa följande (cke-lnjära) ekvaon an( y) y = cos( y) π med avseende å y(), v anar a 0 < y ( ) <. z ( ) = sn( y( )) z = cos( y( )) y Om v mullcerar DE med cos y får v sn y y cos y = (*) Subsuon ekvaonen (*) ger en lnjär DE med avseende å z. z z = (**) P( ) d P( ) d V använder formeln z( ) = e ( C Q( ) e d) och får z ( ) = C Efersom z ( ) = sn( y( )) har v y = arcsn( z( )) dvs y = arcsn( C )

10 Svar: y = arcsn( C )

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t) Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem!

Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem! Sysemplanerng 2011 Allmän om kordsplanerng Föreläsnng 8, F8: Kordsplanerng av vaenkrafsysem Kapel 5.1-5.2.4 Innehåll: Allmän om kordsplanerng Allmän om vaenkraf Elprodukon Hydrologsk kopplng Planerngsprobleme

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att

Läs mer

Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9.45. Kursadministratör: Azra Mujkic, tfn 1104, azra.mujkic@liu.

Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9.45. Kursadministratör: Azra Mujkic, tfn 1104, azra.mujkic@liu. Teknska högskolan vd LU Insuonen för ekonomsk och ndusrell uvecklng Produkonsekonom Helene Ldesam TENTAMEN I TPPE PRODUKTIONSEKONOMI för I,I TISDAGEN DEN 7 APRIL 25, KL 82 Sal: TER, TER4 Provkod: TEN Anal

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år.

AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år. Lösnngar: Akedelen Tena 4-5-5 Uppgf (4 poäng) Defnera ydlg följande begrepp a) APV och skaesköld b) IRR, som bland har lösnngar, när uppsår dessa? c) Asse Bea d) Yeld curve Se exbook and web sources. Uppgf

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor F4 Modell-anpassnng: Mnsavadra-polno olno: nerpolaon Kurvor: scevs polno, Here, splne Bézer-urvor 0-08-06 DN40 nu3 HT Eepel: Mnsavadraeoden V Mnsavadra-approaon ed polno f, [0,] 0.4 f s poler lgger vd

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd. Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

Fyll i ett konvolut (återanvänds tills uppgiften godkänd) Han har sitt rum bredvid mitt

Fyll i ett konvolut (återanvänds tills uppgiften godkänd) Han har sitt rum bredvid mitt 03/07/04 00:33 Praksk nfo nlämnngsppgf lksröm Kan hämas hos Ken (llsammans med ppgf ) S0 lekronk äade nlämnngsppgfer hämas på Kens konor Må.00.30,.303.5 o.00.30,.303.5 (kan varera le pga andra möen) Föreläsnng

Läs mer

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

LABORATION 1 ELEKTRISK MÄTTEKNIK OCH MÄTINSTRUMENT

LABORATION 1 ELEKTRISK MÄTTEKNIK OCH MÄTINSTRUMENT nsiuionen för fysik och maerialveenskap Beng Lindgren, jan 9 LABORAON ELEKRSK MÄEKNK OCH MÄNSRMEN Mål: A kunna hanera de vanligase mekaniska och elekriska mäinsrumenen. A kunna koppla upp enklare elekronikkresar

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elekronik F F3 F4 F Ö Ö P-block Dokumenaion, Seriecom Pulsgivare,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Sar för programmeringsgruppuppgif Kirchoffs lagar Nodanalys Tvåpolsasen

Läs mer

Kolla baksidan på konvolut för checklista Föreläsning 6

Kolla baksidan på konvolut för checklista Föreläsning 6 0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen Chalmers Teknisk fysik Teknisk maemaik Arkiekur och eknik Maemaik- och fysikprove 2010 ysikdelen Provid: 2h. Hjälpmedel: inga. På sisa sidan finns en lisa över fysikaliska konsaner m.m. som evenuell kan

Läs mer

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B TENTAMEN I MATEMATISK STATISTIK Datum: 3 juni 8 Ten i ursen HF3, 6H3, 6L3 MATEMATIK OH MATEMATISK STATISTIK, Ten i ursen HF ( Tidigare n 6H3), KÖTEORI OH MATEMATISK STATISTIK, Ten i ursen HF4, (Tidigare

Läs mer

Tentamen i Logistik 1 T0002N

Tentamen i Logistik 1 T0002N Insuonen för ekonom, eknk och samhäe Tenamen Logsk 1 T0002N Daum: 2011-12-20 Td: 4 mmar Hjäpmede: Mnräknare, formesamng Lärare: Dana Chronéer Jourhavande ärare Namn: Dana Chronéer Teefon: 0920-492037,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera

Läs mer

Lösningar till tentamen i Kärnkemi ak den 21 april 2001

Lösningar till tentamen i Kärnkemi ak den 21 april 2001 Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule

Läs mer

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Internmedicinska placeringen - Malmö

Internmedicinska placeringen - Malmö Vecka 6 Vecka 7 Vecka 8 Vecka 9 Måndag- Måndag Måndag- Måndag Att arbeta på Att arbeta på Vecka 10 Vecka 11 Vecka 12 Vecka 13 Måndag- Måndag Måndag- Måndag Med 1-5 Att arbeta på Med 1-5. Lokal: Röda Salen,

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Elektromagnetisk strålning (ljus) och materia har både våg- och partikelegenskaper

Elektromagnetisk strålning (ljus) och materia har både våg- och partikelegenskaper Föreläsnng 5: Förra gången: Eleromagnes srålnng (ljus) oc maera ar både åg- oc arelegensaer Fooelers ee E E nma = φ m c Comonsrdnng ' 1 cos Parbldnng e + Z e + + e - + Z där Z är en aomärna som ar u reylen

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

Steg och impuls. ρ(x) dx. m =

Steg och impuls. ρ(x) dx. m = Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke

Läs mer

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik. Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags... Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

TPPE13 PRODUKTIONSEKONOMI för I, Ii

TPPE13 PRODUKTIONSEKONOMI för I, Ii LINKÖPINGS TEKNISKA HÖGSKOLA Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Mahias Henningsson TENTAMEN I TPPE3 PRODUKTIONSEKONOMI för I, Ii TORSDAGEN DEN 6 APRIL 009, KL 4-8 SAL:

Läs mer

001 Tekniska byråns information. Värmefrån ventiler. Inom alla områden av såväl nyprojektering som ombyggnad och drift av redan byggda hus riktas inom

001 Tekniska byråns information. Värmefrån ventiler. Inom alla områden av såväl nyprojektering som ombyggnad och drift av redan byggda hus riktas inom pe" `sfk K ".` _. :...... -.Y BS 00 Byggnadssyelsen Teknska byåns nfomaon 979-04 Vämefån venle VÄRMEAVGVNNG CENTRALER M M FRÅN OSOLERADE VENTLER UNDER- nom alla omåden av såväl nypojekeng som ombyggnad

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

En ALM modell med minimering av CVaR och krav på tillväxt. Tobias Anglevik

En ALM modell med minimering av CVaR och krav på tillväxt. Tobias Anglevik En ALM modell med mnmerng av CVa och krav på llväx av Tobas Anglevk Absrac In hs paper we develope a basc Asse-Lably Managemen model where asses mach he lables ae of reurns are randomly generaed wh Mone

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning VA-TAXA 2000 Taxa för Moravaen AB:s allmänna vaen- och avloppsanläggning Taxa för Moravaen AB:s Allmänna vaen- och avloppsanläggning 4 4.1 Avgif as u för nedan angivna ändamål: Anagen av Moravaen AB:s

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Tentamen i Matematik 1 DD-DP08

Tentamen i Matematik 1 DD-DP08 Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

Damm och buller när avfall blir el

Damm och buller när avfall blir el Damm och buller när avfall blir el Här blir avfall värme och el, rä och flis eldas i sora pannor. De är rör med ånga, hjullasare och långradare, damm och buller. En miljö som både kan ge skador och sjukdomar

Läs mer

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2 Frekvensanals Frekvenssvar Ssemeknik/Processreglering Föreläsning 8 Bode- och Nqisdiagram Sabilie och sabiliesmarginaler Läsanvisning: Process Conrol: 6. 6. Frekvensanals Sdera hr ssem reagerar på signaler

Läs mer

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Upphandlingar inom Sundsvalls kommun

Upphandlingar inom Sundsvalls kommun Upphandlingar inom Sundsvalls kommun 1 Innehåll Upphandlingar inom Sundsvalls kommun 3 Kommunala upphandlingar - vad är de? 4 Kommunkoncernens upphandlingspolicy 5 Vad är e ramaval? 6 Vad gäller när du

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual Elekoniska skydd Lågspänningsuusning Användarmanual Building a Newavancer Elecicl'élecicié World Qui fai auan? Elekoniska skydd Inodukion ill de elekoniska skydde Lära känna de elekoniska skydde Funkionsöversik

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Srömkreslära Mäinsrumen Baerier Liksrömsnä Tvåpolsasen KK1 LAB1 Mäning av U och I F/Ö6 F/Ö7 Magnekres Kondensaor Transiener KK LAB Tvåpol mä och sim F/Ö8 F/Ö9 KK3

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer