2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg"

Transkript

1 Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet är sn tur bundet tll en referensram det s.k. nertalsstemet eller tröghetssstemet. Defntonen av jämvkt lder sålunda: Ett materellt sstem är jämvkt om varje del av sstemet är vla. Innan v nför vllkoret för jämvkt skall v först nföra begreppet nre och ttre krafter. sntt S R n R f F =mg Yttre krafter F =mg Inre krafter Fgur. Yttre och nre krafter De ttre krafterna på en kropp är krafter som utfrån påverkar kroppen, t.e. tngdkraften (F), kraften lnan (S), krafterna från bordet (R n och R f ). Inre krafter kroppen är den mängd krafter som verkar mellan kroppens delar, t.e. ett sntt en balk utsatt för ett ttre moment verkar en mängd kraftpar där nettoeffekten är lka med momentet om kroppen är jämvkt. Jämvktsvllkoret kan då uttrckas som: Ett materellt sstem förblr jämvkt om de ttre krafterna på sstemet bldar ett nollsstem. För nollsstemet gäller att kraftsumman är noll och att momentsumman för varje godtcklg punkt () är noll: 00FM (.) -

2 Jämvkt. Frläggnng Det första och kanske det vktgaste steget för att bestämma jämvktsvllkoren för ett materellt sstem är den procedur som kallas frläggnng där man rtar ut de ttre krafter som verkar på kroppen. OBS! nga andra krafter får förekomma fguren. V skall först studera ursprunget för några vanlga tper av kontaktkrafter. Tp av kontakt eller ursprung Flebel lna, vajer, band eller rep Frläggnng egenvkt försummas En kraft som kommer från en flebel lna är alltd en dragkraft egenvkten påverkar Slät ta Rå ta Slät ta Rå ta Fast nspänd Ett fast nspänt stöd tar upp moment (M) och krafter två rktnngar (F, V). Ledad Rullstöd Led rörlg ferad Rullstöd Egentng d Fjäder Fjäderkraften ger trck om den komprmeras och drag om den tänjs ut. En lnjär fjäder ger en kraft drekt proportonell mot förlängnngen (F=k) -

3 Jämvkt En annan vktg aspekt vd frläggnng är det sstem man skall studera. Här kan man tllämpa Newtons lag om verkan och motverkan: Mot varje kraft svara en annan lka stor och motsatt rktad kraft, så att de ömsesdgt mellan två kroppar verkande krafter är lka stora och motsatt rktade. Beroende på om v betraktar jämvkten för mannen eller välten Fgur. får v två olka sstem att frlägga. Sstem Sstem Fgur. Frläggnng av sstem -

4 Jämvkt rbetsgången vd frläggnng av ett sstem kan sammanfattas med följande punkter: Eempel: Sstem Fackverk egenvkten är försumbar Bestäm vlket eller vlka sstem/delsstem som skall frläggas. Valet nnehåller ofta ett eller flera obekanta storheter. Isolerngen av sstemet görs vd defnerade gränser t.e. kontakttor eller gränser tll andra attraherande/repellerande kroppar. Kontakttor, attraherande kroppar, egentngd m.m. ersätts med nrtade krafter. Kända krafter nrtas med angven av kraftens storlek och rktnng. Okända krafter skall representera med kraftplar en antagen rktnng (helst enlghet med det valda koordnatsstemet). Beräknngarna kommer sedan att vsa om rktnngen är korrekt eller motrktad (negatvt värder). Valet av koordnatsstem bör också anges fguren. Frlagt sstem Fast nspänd balk Ledad nfäst balk Underlaget vd är glatt, dvs. stödkraft är rktad normalt balken -4

5 Jämvkt. Jämvktsekvatoner I det allmänna fallet kan tre stcken oberoende jämvktsekvatoner ställas upp ett - dmensonellt koordnatsstem: F 0, F 0, M z 0 (.) dvs. summan av alla krafter respektve rktnngen samt summan av momenten runt en godtcklg punkt skall vara noll. Beroende på kraftrktnngar och poston kan antalet oberoende jämvktsekvatoner reduceras. Kraftsstem lla krafter har gemensam verknngslnje. ntalet jämvktsekvatoner = Eempel lla krafters verknngslnjer passerar genom en gemensam punkt. ntalet jämvktsekvatoner = Parallellt kraftsstem. ntalet jämvktsekvatoner =, en kraft och en momentekvaton. Generellt dmensonellt sstem. ntalet jämvktsekvatoner = -5

6 Jämvkt Eempel. Beräkna krafterna C och T fguren tll vänster. Lösnng: F 0: 8 T cos 40 C sn T 0.4C 8 F 0: T sn 40 C cos T 0.940C Genom att kombnera de två ekvatonerna kan v lösa ut C och T Svar: T 9.09 kn C.0 kn Eempel. Bestäm storleken på kraften T kabeln som håller upp balken. Balken har en egenvkt på 95 kg per meter. Lösnng: Frlägg fguren och ansätt egentngden på balken ( ) mtten. Genom att ta en moment ekvaton runt punkten, kan T lösas ut drekt: 0 (vrdnng moturs postv) M T cos T sn Svar: T 9.6 kn Övnng: Beräkna, från F F 0. Svar: 7.77 kn, 6.7 kn lla krafter går genom en gemensam punkt, dvs. v kan utnttja två jämvktsekv: F 0, F 0 Frlagt sstem -6

7 Jämvkt.4 Tngdpunkt, masscentrum, statskt moment, ttröghetsmoment En vktg kraft som alltd förekommer alla sstem är egentngden. Ibland kan nverkan av egentngden vara försumbar och behöver ej beaktas frläggnngen. I de fall den tas med är det vktgt att kunna bestämma kroppens tngdpunkt, dvs. den punkt kroppen där tngdkraftens verknngslnje passerar. Denna punkt sammanfaller med kroppens masscentrum..4. Masscentrum för partkelsstem 0 r r m g m g m g m g mg m g m g Fgur. Partkelsstem Betrakta ett partkelsstem som består av ett antal ndvduella partklar var och en med massan m.varje partkel sstemet påverkas av en tngdkraft mgvars rktnng är lka för alla partklar sstemet V vet från tdgare kaptel att v kan ersätta alla delkrafter med en resultant vars belopp blr: (.) R m g mg Resultantens angreppspunkt bestäms av de faktum att delpartklarnas momentsumma måste överensstämma med resultantens moment: rm g rm r R rm g r (.4) mg m där r är avståndet från en godtcklg referenspunkt 0. Ovanstående kan delas upp genom att betrakta varje koordnat för sg så att: m m m z,, z m m m -7 (.5)

8 Jämvkt dvs. angreppspunkten, masscentrum, tngdpunkt för ett partkelsstem kan uttrckas som summa av alla partklars massa multplcerat med avståndet från orgo dvderat med den totala massan av alla partklar. Termen mr brukar betecknas som det statska momentet m a p ett vsst plan: (.6) S m, S m, S m z z z d v s masscentrum eller tngdpunkten för ett partkelsstem kan uttrckas som: Sz S S z,, z (.7) m m m.4. Masscentrum för volmer För kroppar som har en kontnuerlg massfördelnng övergår ovanstående summor tll ntegraler. (,,z) dm z r Fgur. Kontnuerlg massfördelnng för volmer Om kroppens denstet betecknas med [kg/m ] kan den uttrcket för kroppens massa skrvas m dm dv där ntegralen är en volmsntegral. Uttrcken för V de statska momenten övergår på motsvarande sätt tll volmsntegraler, t e så blr det statska momentet m a p z planet Sz dm dv o s v. För specalfallet när densteten är konstant sammanfaller kroppens masscentrum med volmens tngdpunkt, d v s: V dv dv V V zdv Sz V S S z V V,, z V V V V V V V (.8) I ett homogent tngdkraftsfält sammanfaller masscentrums koordnater med tngdpunkten -8

9 Jämvkt där V är kroppens volm och t e S V betecknar volmen statska moment m a p -planet..4. Masscentrum, tröghetsmoment för tor För kroppar med konstant tjocklek t en rktnng, t e, skal kan uttrcket för masscentrum förenklas genom att volm och volmsntegraler kan ersättas med area och areantegraler: d d S z Sz t,, z där är skalkroppens area och t e S z betecknar areans statska moment m a p z-planet. Normalt brukar man beteckna areors statska moment med: S d, S d (.9) (.0) d v s man anger nte z koordnaten Fgur.4 Kontnuerlg massfördelnng för tor -9

10 Jämvkt En annan vktg storhet som har stor praktsk betdelse mekanken, specellt när det gäller balkteor är tors tröghetsmomentet. Ytors tröghetsmoment defneras som: I d, I d (.) Rent praktskt kan man tolka tröghetsmomentet som de moment som en lnjärt varerande tlast ger på en area runt en specfk ael. V kan på ett enkelt sätt paralellförfltta tröghetsmomentet m h a Steners sats. 0 r (,) TP 0 Fgur.5 Steners sats Låt oss säga att v har beräknat tröghetsmomenten I 0 och I 0 för kroppen Fgur.5 d v s med avseende på alarna 0 och 0. som skär kroppens tngdpunkt. Nu vll v beräkna tröghetsmomenten m a p alarna och d v s parallellförfltta tröghetsmomentet tll en n ael. Steners sats nnebär att det na tröghetsmomentet fås genom att addera avståndet från tngdpunkten kvadrat gånger kroppens area, : I I 0 I I 0 (.) Storheter som tngdpunkt, statskt och ttröghetsmoment fnns tabellerade för olka geometrer ppend. Genom att använda Steners sats kan man sedan på ett enkelt sätt parallellförfltta tröghetsmomentet tll önskad poston. -0

11 Jämvkt.4.4 Eempel Eempel. Beräkna tngdpunkten för den tunna homogena kroppen tll höger. Lösnng: a, a Del : a Del : a a a 4 9a, a 4 8 a a a 4 8 Del : 4a / a( ) a, a Summor: a 8 a a a a a a a( ).007a a a a 9a a a 0.87a 88 4 a a 8 a 8.58a.007a.58a 0.87a.58a 0.664a 0.55a a/4 a a/ a a/ Tngdpunkten beräknas genom först ta fram tngdpunkterna för de ngående delarna. Sedan summeras bdragen p s s som ett sstem av partklar. På grund av att densteten och tjockleken t är konstant kan uttrcket reduceras t.e. för -koordnaten tll: m t m t OBS! Kontrollera om svaren verkar rmlga -

12 Jämvkt Eempel.4 lla som har böjt på en bräda vet att den blr mcket stvare om man ställer den på högkant. Det beror på att tröghetsmomentet blr mcket större när brädan står på högkant jämfört om den lgger ned. V skall det här eemplet bestämma tröghetsmomentet I runt -aeln för en I-balk genom att använda Steners sats. Lösnng: Bestäm först tröghetsmomentet för delarna var för sg: I I bh I 8. 0 mm 6. 0 mm nvänd sedan Steners sats för att förfltta del och tll var sn kant av del : I I I I mm Svar: mm V ser att del och tröghetsmoment runt aeln 0 är försumbart jämfört med bdraget från Steners sats. Mått för del, och 400 mm, b h bh Enlgt append : I /+40/ 0 mm 0 40 mm 0 -

13 Jämvkt.5 Övnngsuppgfter Uppgft. Rta n de krafter som saknas frläggnngsskssen tll höger -

14 Jämvkt Uppgft. Bestäm med vlken horsontell kraft P trädgårdsmästaren tll höger måste skjuta på den 00 kg tunga välten. Bestäm också reaktonskraften R som verkar mellan mark och vält. Vältens tngdpunkt är vd punkten 0. Svar: P =7.0 N, R = 996 N Uppgft. Vlken horsontell kraft P måste mannen på blden dra med för att placera den 50 kg tunga lasten mtt över lastblen. Svar: P = 6.6 N -4

15 Jämvkt Uppgft.4 Rngen som stter upphängd med två kablar fästa de vertkala väggarna är belastad med kraft på 000 N. Beräkna krafterna som uppstår kablarna, T och T. Svar: T = 897 N, T = 7 N Uppgft.5 Bestäm vnkeln så att den applcerade kraften P placerar den 50 kg lasten mtt över öppnngen. Bestäm också lnkraften T på den.9 m långa lnan. Svar: = 44.8 O, T = 4.5 kn -5

16 Jämvkt Uppgft.6 Kabeln mellan och B är 6 m lång och håller upp en 00 kg tung låda. Bestäm kraften T (drag) kabeln. Uppgft.7 Skruven vd B har dragts åt så mcket att träblocken är under en trckkraft av 500 N. Vad är då kraften som verkar skruv? (ntag att krafterna som tas de båda skruvarna är skruvens rktnng). Svar: = 50 N. Uppgft.8 Verktget används vd lmnng för att pressa hop ett lamnat på var sn sda nära kanten. Om en kraft på 0 N applceras på handtaget, vlken blr då kraften som rullarna pressar på lamnatet? -6

17 Jämvkt Uppgft.9 Bestäm kraften T storlek av massan m som hänger sstemet av block. Försumma egenvkten av taljor och block. Uppgft.0 Om man placerar en dstans under huvudet på en hammare ökar man avsevärt kraften för att dra ut spkar. Bestäm dragkraften T på spken och trckraften som verkar vd punkten om man applcerar en kraft på 00 N skaftet på hammaren fguren tll höger. Kontakttan är tllräcklg rå för att förhndra att hammaren glder. Svar: T = 800 N, = 755 N. Uppgft. En 00 kg tung balk med tngdpunkten vd G stter fastsvetsad en pnne som går genom punkten. För att prova svetsen vd ställer sg en 80 kg man och drar med en kraft av 00 N ett rep. Beräkna momentet M som påverkar pnne vd. Svar: M = 4.94 knm -7

18 Jämvkt Uppgft. Kranen lfter en 4.0 ton tung truck. Masscentrum av den ton tunga lftbommen O är placerad mtt mellan punkten O och. Beräkna dragkraften vajern T som stter fast punkten B och storleken på reaktonskraften vd O som verkar rktnng av bommen O. Svar: T = 6.5 kn, O = 99. kn Uppgft. En trumma som väger 400 kg lgger på rullar vd och B. Rullen vd är fr att röra sg frktonsfrtt. Rullen vd B måste påföras en frktonskraft tangentens rktnng mellan kontakten trumma - rulle nnan den börjar röra sg. Beräkna frktonskraften F om frktonsmotståndet övervnns precs när mannen står vd postonen vsad fguren. Mannen väger 80 kg. Svar: F = 86 N Uppgft.4 Den homogena balken fguren är 6 m lång och väger 00 kg. Lftanordnng används att lfta balken. Vad är kraften repen C ( T )och BC ( T B ) när balken lfts av stöden? Svar: T 86 N, T 450 N B -8

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Biomekanik, 5 poäng Moment

Biomekanik, 5 poäng Moment (kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

mm F G (1.1) F mg (1.2) P (1.3)

mm F G (1.1) F mg (1.2) P (1.3) Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08 Sruvörband ar Bar MdH/IDT 1 Innebär att: - olla att ruvarna håller - olla att örbandet håller hop vd pålagd lat ar Bar MdH/IDT 2 Sruven - σ = a / A - a : p.g.a. lat och örpännng - A E : pännngarea nn bland

Läs mer

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)

Läs mer

N A T U R V Å R D S V E R K E T

N A T U R V Å R D S V E R K E T 5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Växelström = kapitel 1.4 Sinusformade växelstorheter

Växelström = kapitel 1.4 Sinusformade växelstorheter Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

i = 1. (1.2) (1.3) eller som z = x + yi

i = 1. (1.2) (1.3) eller som z = x + yi Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

Ur KB:s samlingar Digitaliserad år 2013

Ur KB:s samlingar Digitaliserad år 2013 Ur KB:s samlngar Dgtalserad år 2013 EBI slista % (UTANFÖRBINDELSE) PÅ VEKLUNDHs_ STÅLPLOGÅB_ OCH LANDTBBUKSBEDSKAP -. SAMT Ä ÅKDON M. M. FRÅN yaprn;m5 (FÖRR A HJELMAFORST POSTADRESS: W115PRV DALSQTORP

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

Bofakta. Brf Äppelblom Hildedal

Bofakta. Brf Äppelblom Hildedal Bofakta ldedal 2 Välkommen hem Att flytta tll ett nytt hem är alltd lka spännande. Att dessutom flytta tll ett helt nybyggt hem, där ngen bott tdgare, är extra specellt. ldedal Park förenar både grönska

Läs mer

Handlingsplan. Grön Flagg. Bosgårdens förskolor

Handlingsplan. Grön Flagg. Bosgårdens förskolor Handlngsplan Grön Flagg Bosgårdens förskolor Kommentar från Håll Sverge Rent 2015-08-11 14:16: Det är nsprerande att läsa hur n genom röstnng tagt tllvara barnens ntressen när n tagt fram er handlngsplan.

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA 1 KOMIHÅG 2: --------------------------------- Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI) STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen

Läs mer

PLUSVAL PRISLISTA 2016

PLUSVAL PRISLISTA 2016 PLUSVAL PRISLISTA 2016 PÅ 5 ÅR Det här är PLUSVAL Med KBAB:s plusval kan drömmen om ett personlgare boende bl verklghet. Modernt, klassskt, vågat eller stlrent; gör om dtt hem så att det passar just dg.

Läs mer

Bruksanvisning och monteringshandledning

Bruksanvisning och monteringshandledning Bruksanvsnng och monterngshandlednng Energpelare 1341 26/27/28 1347 26/27/28 Energpelare med belysnngsenhet 1342 26/27/28 1348 26/27/28 Ljuspelare 1343 26/27/28 Ljuspelare, kort 1344 26/27/28 Innehållsförtecknng

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL

Läs mer

D 1 KOMPONENTBESKRIVNING

D 1 KOMPONENTBESKRIVNING PURE CYCLING CYKELHANDBOK Speedmax CF 1 13 14 2 3 4 5 6 7 8 9 10 11 12 e d c a b 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Detta är extra anvsnngar för Canyon Speedmax CF. Se även Canyons cykelhandbok

Läs mer

MULTIVAC kundportal din dörr till MULTIVAC-världen

MULTIVAC kundportal din dörr till MULTIVAC-världen MULTIVAC kundportal dn dörr tll MULTIVAC-världen 2 Innehåll MULTIVAC kundportal Inlednng Åtkomst dygnet runt Dna uppgfter Enkel och ntutv Informatv och aktuell Dna Fördelar Dn Regstrerng 5 6 9 10 11 12

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

IN1 Projector. Snabbstart och referenshandbok

IN1 Projector. Snabbstart och referenshandbok IN Projector Snabbstart och referenshandbok Läs häftet med säkerhetsanvsnngar nnan du nstallerar projektorn. Packa upp kartongen Detta fnns med: Ljud- och vdeokablar är nte nkluderade. Du kan köpa dem

Läs mer

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?

Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det? NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

DOM 2010-05-06 Meddelad i Stockholm

DOM 2010-05-06 Meddelad i Stockholm I' ~~ KAMARRTTEN I STOCKHOLM Mgratonsöverdomstolen Avdelnng 1 DOM 2010-05-06 Meddelad Stockholm Sda 1 (3) Mål nr UM 1259-10 KLAGANE Offentlgt btrde: ÖVERKAGAT AVGORANDE Länsrättens Stockholms län, mgrtonsdomstolen,

Läs mer

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket.

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket. Förord Detta examensarbete har utförts på uppdrag av nsttutonen för Industrell produkton på Lunds Teknska Högskola, och genomförts på företaget. Jag vll tacka alla på företaget som har delat med sg av

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman

Handlingsplan. Grön Flagg. I Ur och Skur Pinneman Handlngsplan Grön Flagg I Ur och Skur Pnneman Kommentar från Håll Sverge Rent 2013-09-23 12:55: N har fna och ntressanta utvecklngsområden med aktvteter som anpassas efter barnens förmågor. Se er själva

Läs mer

Skolbelysning. Ecophon, fotograf: Hans Georg Esch

Skolbelysning. Ecophon, fotograf: Hans Georg Esch Skolbelysnng Ecophon, fotograf: Hans Georg Esch Skolan är Sverges vanlgaste arbetsplats. En arbetsplats för barn, ungdomar och vuxna. Skolmljön ska skapa förutsättnngar för kreatvtet och stmulera nlärnng.

Läs mer

1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?

1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel? Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:

Läs mer

Om ja, hur har ni lagt upp och arbetat i Grön Flagg-rådet/samlingarna med barnen och hur har det upplevts?

Om ja, hur har ni lagt upp och arbetat i Grön Flagg-rådet/samlingarna med barnen och hur har det upplevts? I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur barnen fått nflytande. Här fnns utrymme för reflektoner från barn

Läs mer

Innehåll Etablera instrument Funktioner Tekniska data Inställningar Meddelandekoder Underhåll Garanti Säkerhetsföreskrifter Funktioner

Innehåll Etablera instrument Funktioner Tekniska data Inställningar Meddelandekoder Underhåll Garanti Säkerhetsföreskrifter Funktioner DEWALT DW03201 Innehåll Etablera nstrument - - - - - - - - - - - - - - - - - - - - - - - - 2 Introdukton - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Överskt - - - - - - - -

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

Attitudes Toward Caring for Patients Feeling Meaninglessness Scale

Attitudes Toward Caring for Patients Feeling Meaninglessness Scale Atttudes Toward Carng for Patents Feelng Meannglessness Scale Detta frågeformulär handlar om olka exstentella känslor, tankar, förståelse samt stress som kan uppstå vården av patenter lvets slutskede.

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Hässlegårdens förskola 15 apr 2014 Kommentar från Håll Sverge Rent 2014-04-15 15:26: N har på ett engagerat och varerat sätt arbetat med ert Grön flagg-arbete.

Läs mer

Industrins förbrukning av inköpta varor (INFI) 2008

Industrins förbrukning av inköpta varor (INFI) 2008 STATISTISKA CENTRALBYRÅN 1(97) Industrns förbruknng av nköpta varor (INFI) 2008 NV0106 Innehåll SCBDOK 3.1 0 Admnstratva uppgfter 0.1 Ämnesområde 0.2 Statstkområde 0.3 SOS-klassfcerng 0.4 Statstkansvarg

Läs mer

CYKELHANDBOK LANDSVÄGSCYKEL

CYKELHANDBOK LANDSVÄGSCYKEL PURE CYCLING CYKELHANDBOK LANDSVÄGSCYKEL 1 13 14 2 3 4 5 c a 15 16 17 6 7 8 9 10 11 12 e d b 18 19 20 21 22 23 24 25 Vktgt! Monterngsanvsnng sdan 12. Läs sdorna 4-11 nnan första cykelturen.! Dn cykel och

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsnng -2 732G70 Statstk A Kaptel 2 Populatoner, stckprov och varabler Sd -46 2 Populaton Den samlng enheter (exempelvs ndvder) som v vll dra slutsatser om. Populatonen defneras på logsk väg med utgångspunkt

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...

Läs mer

Grön Flagg-rapport Förskolan Kalven 20 jan 2016

Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Kalven 20 jan 2016 Kommentar från Håll Sverge Rent 2016-01-20 09:07: Förskolan Kalven, n har lämnat n en toppenrapport även denna gång! Bra områden

Läs mer

Utanpåliggande takmontering planpanel FKT-1

Utanpåliggande takmontering planpanel FKT-1 Monterngshandlednng Utanpålggande takmonterng planpanel FKT- för IVT solvärmesystem 60966.0-.SD 6 70 6 99 SE (006/0) SD Innehållsförtecknng Allmänt.................................................... Teknska

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

Splitsning av flätade linor gjorda av polyester eller nylon.

Splitsning av flätade linor gjorda av polyester eller nylon. Denna splits är inte lämplig för dubbelflätade linor vars styrka enbart beror på styrkan i kärnan. Öglesplitsen används för att placera en permanent ögla i änden av ett rep, i allmänhet för förtöjning

Läs mer

KEM M36. Elektroanalytisk kemi 15 hp VT 10. Av Lars Erik Andreas Ehnbom. Föreläsare Prof. Lo Gorton. Gränsytan. Ag + -lösning. e - H 2 O.

KEM M36. Elektroanalytisk kemi 15 hp VT 10. Av Lars Erik Andreas Ehnbom. Föreläsare Prof. Lo Gorton. Gränsytan. Ag + -lösning. e - H 2 O. Gränsytan + + e - + e - + e - + -lösnng H 2 + H 2 -bleck KEM M36 Elektroanalytsk kem 15 hp VT 1 Av Lars Erk Andreas Ehnbom Föreläsare Prof. Lo Gorton Allmänt: en del av den nledande nformatonen på -föreläsnngarna

Läs mer

Vrid och vänd en rörande historia

Vrid och vänd en rörande historia Vrid och vänd en rörande historia Den lilla bilden nederst på s 68 visar en låda. Men vad finns i den? Om man vrider den vänstra pinnen, så rör sig den högra åt sidan. Titta på pilarna! Problemet har mer

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Kvalitetssäkring med individen i centrum

Kvalitetssäkring med individen i centrum Kvaltetssäkrng med ndvden centrum TENA har tllsammans med äldreboenden Sverge utvecklat en enkel process genom vlken varje enskld ndvd får en ndvduell kontnensplan baserad på hans eller hennes unka möjlgheter

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 007-1-18 FI Dnr 07-1171-30 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers P.O. Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

Skoldemokratiplan Principer och guide till elevinflytande

Skoldemokratiplan Principer och guide till elevinflytande Skoldemokratplan Prncper och gude tll elevnflytande I Skoldemokratplan Antagen av kommunfullmäktge 2012-02-29, 49 Fnspångs kommun 612 80 Fnspång Telefon 0122-85 000 Fax 0122-850 33 E-post: kommun@fnspang.se

Läs mer

Viltskadestatistik 2014 Skador av fredat vilt på tamdjur, hundar och gröda

Viltskadestatistik 2014 Skador av fredat vilt på tamdjur, hundar och gröda Vltskadestatstk 214 Skador av fredat vlt på tamdjur, hundar och gröda RAPPORT FRÅN VILTSKADECENTER, SLU 215-1 Vltskadestatstk 214 Skador av fredat vlt på tamdjur, hundar och gröda Rapport från Vltskadecenter,

Läs mer

Industrins förbrukning av inköpta varor INFI

Industrins förbrukning av inköpta varor INFI Statstska centralbyrån SCBDOK 3.2 (37) Industrns förbruknng av nköpta varor INFI 2003 NV006 Innehåll 0 Allmänna uppgfter... 2 0. Ämnesområde... 2 0.2 Statstkområde... 2 0.3 SOS-klassfcerng... 2 0.4 Statstkansvarg...

Läs mer

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM

OBS! Dina högtalare (medföljer ej) kan skilja sig från de som visas på bild i denna bruksanvisning. modell RNV70 HIFI-SYSTEM OBS! Dna högtalare (medföljer ej) kan sklja sg från de som vsas på bld denna bruksanvsnng. modell RNV70 HIFI-SYSTEM Underhåll och specfkatoner Läs bruksanvsnngen nnan du börjar använda utrustnngen. Se

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring

Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se

Läs mer

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014

Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Illustratoner: Anders Worm Grön Flagg-rapport Förskolan Fjäderkobben 17 apr 2014 Kommentar från Håll Sverge Rent 2014-02-25 11:44: Inskckad av msstag. 2014-04-17 09:52: Bra jobbat, Förskolan Fjäderkobben!

Läs mer

SVÅRT UTAN SNARARE OMÖJLIGT - PA DET STADIUM., SOM PROJEKTET F N BEFINNER SIG.

SVÅRT UTAN SNARARE OMÖJLIGT - PA DET STADIUM., SOM PROJEKTET F N BEFINNER SIG. ' ~ REDERNÄRNGENS SYN PA SCANDNAVAN LNK CGDTEBORGS HAltNDAG 26/9-85) ATT 6E REDERNÄRNGENS SYN PA SCANDNAVAN LNK ÄR NTE BARA. SVÅRT UTAN SNARARE OMÖJLGT - PA DET STADUM., SOM PROJEKTET F N BEFNNER SG. DE

Läs mer

FRISKIS&SVETTIS. malmö VERKSAMHETS. berättelse

FRISKIS&SVETTIS. malmö VERKSAMHETS. berättelse FRISKIS&SVETTIS malmö VERKSAMHETS berättelse 2015 VERKSAMHETSBERÄTTELSE 2015 2 Lasse Twetman heter jag och är chef för Malmöförenngen vlket jag vart sen starten 1979, först Sk Club Skåne, sen den förenng

Läs mer

Gymnasial yrkesutbildning 2015

Gymnasial yrkesutbildning 2015 Statstska centralbyrån STATISTIKENS FRAMTAGNING UF0548 Avdelnngen för befolknng och välfärd SCBDOK 1(22) Enheten för statstk om utbldnng och arbete 2016-03-11 Mattas Frtz Gymnasal yrkesutbldnng 2015 UF0548

Läs mer

Förberedelse INSTALLATION INFORMATION

Förberedelse INSTALLATION INFORMATION Förberedelse 1 Materalet tll Pergo trägolv levereras med llustrerade anvsnngar. I texten nedan ger v förklarngar tll llustratonerna, som kan delas upp tre områden: Förberedelser, Läggnng och Rengörng.

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

Kompenserande löneskillnader för pendlingstid

Kompenserande löneskillnader för pendlingstid VTI särtryck 361 2004 Kompenserande löneskllnader för pendlngstd En emprsk undersöknng med Svenska data Konferensbdrag från Transportforum 8 9 januar 2003 Lnköpng Gunnar Isacsson VTI särtryck 361 2004

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Grön Flagg-rapport Borrby förskola 18 maj 2015

Grön Flagg-rapport Borrby förskola 18 maj 2015 Illustratoner: Anders Worm Grön Flagg-rapport Borrby förskola 18 maj 2015 Kommentar från Håll Sverge Rent 2015-05-11 09:08: skckar tllbaka enl tel samtal 2015-05-18 15:32: Det har vart rolgt att läsa er

Läs mer

Ur KB:s samlingar Digitaliserad år 2013

Ur KB:s samlingar Digitaliserad år 2013 Ur KB:s samlngar Dgtalserad år 2013 J H 9 D A N 1E L ä s E Ng l IQLSTOCKHOLM; Kontoroch Expostonslokál L; Telegrafadress: o o CI-:AMPIÖN Crgø Brunkebergstorg16 8a 18. 55 50 Allmffelefon dákâäââlfâfâff

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS

Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Beslutad av kommunfullmäktge 2013-03-27, 74 Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Fnspångs kommun

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer