LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B"

Transkript

1 GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl Plats: V Ansvarg lärare: Ulf Torkelsson, tel arbete, bostad, mobl Hjälpmedel: Standard Math Tables, Beta, Physcs Handbook, formelsamlng, valfr räknare. Ett A4-ark med egna antecknngar. Lösnngarna presenteras på kurshemsdan den august. Resultaten anslås senast den 9 august. Tentamensgransknng den 9 august kl S06. Varje uppgft ger maxmalt 3 poäng. För godkänt krävs mnst 8,5 poäng och för VG 3,5 poäng. UPPSTÄLLDA SAMBAND SKALL MOTIVERAS gärna med en enkel skss.. Fallskärmshopparen Klas utsätts för ett luftmotstånd av formen cv medan han faller. Beräkna Klas hastghet när han har fallt en sträcka z under förutsättnngen att Klas vkt är m. Klas hastghet är 0 från början. Lösnng: Fallskärmshopparens rörelseekvaton är där v kan skrva om acceleratonen Detta är en separabel dfferentalekvaton ma = mg cv, mv dv dz = mg cv. mvdv = dz. 3 mg cv V ntegrerar ekvatonen från det att fallskärmshopparen börjar med att falla från vla z v mvdv [ dz = z = mg cv = m c ln mg cv ] v = m c mg cv ln. 4 mg

2 Ekvatonen kan nu skrvas om som och tll slut löser v ut v = mg cv = e cz/m, 5 mg mg c e cz/m. 6. En hss består av en hsskorg, som väger 000 kg, och en motvkt, som väger 600 kg. Hsskorg och motvkt är förbundna va en kabel, som löper över ett hjul med raden 0.3 m. Hjulet, som är homogent och väger 60 kg, är kopplat tll en motor, som ger ett vrdmoment av 500 Nm. Medan hssen är på väg upp lossnar halva motvkten. Beräkna hsskorgens acceleraton omedelbart därefter. Lösnng: Hsskorgen påverkas av en nedåtrktad tyngdkraft m hss g och en uppåtrktad kraft T från hsslnan. På samma sätt påverkas den återstående delen av motvkten av en tyngdkraft m halv g och en uppåtrktad kraft, T, från hsslnan. V kan då ställa upp rörelseekvatonerna för hsskorg och motvkt: Ur dessa ekvatoner kan v lösa ut krafterna Momentekvatonen för hjulet är m hss a = T m hss g 7 m halv a = m halv g T. 8 T = m hss a g 9 T = m halv g a 0 I ω = T T R + τ. V kan nu utnyttja att vnkelacceleratonen ω = a/r och våra uttryck för T och T I R a = m halv g a m hss a + g + τ R. V löser nu ut acceleratonen Hjulets tröghetsmoment a = m halv m hss g + τ R I R + m halv + m hss. 3 I = MR, 4

3 så att acceleratonen blr a = m halv m hss g + τ R M + m = halv + m hss g , =.4 m s En matematsk pendel består av en massa m som stter änden av en masslös stång med längden r. Pendeln är sn tur upphängd en kropp med massan m, vlken kan röra sg längs ett horsontellt spår under nverkan av en fjäder med fjäderkonstanten k, sådan att kr = mg. Bestäm systemets egenfrekvenser för små svängnngar. Lösnng: Den knetska energn för systemet är T = mẋ + [ ] m ẋ + r θ cos θ + r θ sn θ, 6 och den potentella energn är Alltså blr Lagranganen V = mgr cos θ + kx. 7 V = T V = mẋ + [ ] m ẋ + r θ cos θ + r θ sn θ + mgr cos θ kx. 8 V har då att x ẋ θ = kx, 9 = mẋ + m ẋ + r θ cos θ = 3mẋ + mr θ cos θ 0 = m ẋr θ cos θ r θ sn θ + mr θ sn θ cos θ mgr sn θ = mẋr θ sn θ mr θ cos θ sn θ + mr θ sn θ cos θ mgr sn θ = mrẋ θ sn θ mgr sn θ θ = m ẋ + r θ cos θ r cos θ + mr θ sn θ = mẋr cos θ + mr θ cos θ + mr θ sn θ = mẋr cos θ + mr θ. Lagranges rörelseekvatoner ger oss kx 3mẍ mr θ cos θ + mr θ sn θ = 03 mrẋ θ sn θ mgr sn θ mẍr cos θ mẋr θ sn θ mr θ = 04 3

4 För små vnkelutslag är sn θ θ, cos θ och v kan försumma termer som är kvadratska eller av högre ordnng x och θ eller deras dervata 3mẍ + mr θ = kx 5 mrẍ + mr θ = mgrθ 6 På matrsform kan v skrva 3 ẍ k/m 0 = r θ 0 g/r x rθ. 7 V sätter nu ω 0 = k m = g r, 8 och v ansätter en lösnng på formen x x0 = rθ rθ 0 cos ωt. 9 Vårt ekvatonssystem blr då ω 3 x rθ ω = ω0 x rθ, 30 som är ett egenvärdesproblem, som v kan formulera som 3ω ω0 ω x 0 ω ω ω0 =. 3 rθ 0 För att ekvatonssystemet skall ha en cke-trval lösnng måste determnanten vara 0 3ω ω 0 ω ω 0 ω 4 = 0, 3 som efter utvecklng av vänsterledet ger oss Denna ekvaton har lösnngen ω = ω 0 ± vlken ger alla egenfrekvenserna. ω 4 4ω 0ω 4 + ω 4 0 = ω 4 0 ω4 0 = ω 0 ±, En axel går genom mttpunkten av en tunn homogen stav med massan m och längden l på så sätt att staven bldar en vnkel θ med axeln. Axeln roterar med den konstanta vnkelhastgheten ω. Beräkna det vrdmoment som axeln utövar på staven. 4

5 Lösnng: Staven har tre huvudaxlar. Två av dessa är vnkelräta mot staven. V väljer axel ˆ så att den är vnkelrät mot både staven och axeln, vlket betyder att den är horsontell. Huvudaxel ˆ bldar då en vnkel π θ med axeln, och huvudaxel ˆ3 är parallell med staven. Tröghetsmomenten som hör tll dessa stavar är och I 3 = 0. Rörelsemängdsmomentet är I = I = ml, 35 L = I ω ˆ + I ω ˆ + I 3 ω 3ˆ3. 36 V noterar nu att ω = 0 eftersom ˆ är vnkelrät mot rotatonsaxeln. Därför har v att L = ml ω sn θˆ. 37 Vektorn ˆ roterar med staven runt axeln, så v måste nu skrva om rörelsemängdsmomentet ett fxt koordnatsystem. V väljer ett koordnatsystem xyz så att ẑ är parallell med rotatonsaxeln och ˆ är parallell med ŷ vd tden 0. Då är ˆ = sn θ cos ωtˆx + sn θ sn ωtŷ + cos θẑ. 38 Rörelsemängdsmomentet är alltså L = ml ω sn θ sn θ cos ωtˆx + sn θ sn ωtŷ + cos θẑ. 39 V beräknar vrdmomentet ur sambandet 5. Vsa att τ = dl dt = ml ω sn θ sn ωtˆx + cos ωtŷ. 40 a. Banrörelsemängdsmomentet är bevarat för en testpartkel som rör sg under nverkan av en centralkraft. poäng b. Den knetska energn är bevarad för en laddad testpartkel som påverkas av en magnetsk kraft F = qv B, där q är partkelns laddnng, v dess hastghet och B magnetfältet. poäng 5

6 Lösnng: a. V derverar rörelsemängdsmomentet med avseende på tden V noterar nu att L = r p 4 dl dt = dr dt p + r dp dt. 4 p = m dr dt, 43 så att den första termen högerledet är 0. Å andra sdan ger oss Newtons andra lag att dp = F, 44 dt men för en centralkraft är F parallell med r, så att också den andra termen är 0. Därför har v dl = 0, 45 dt och rörelsemängdsmomentet är bevarat. b. En magnetsk kraft har nte någon potental så partkelns totala energ, E, är densamma som dess knetska energ, T. Förändrngen av energn är de = v F = v q v B = 0, 46 dt och alltsåär den knetska energn bevarad. 6. Betrakta ett system av N partklar med massor m, ortsvektorer r och hastgheter v, där N. a. Vsa att systemets totala rörelsemängdsmoment är summan av rörelsemängdsmomentet för masscentrums rörelse och rörelsemängdsmomentet för de ensklda partklarnas rörelse relatvt masscentrum. poäng b. Vsa att systemets knetska energ är summan av masscentrums knetska energ och den knetska energn för de ensklda partklarnas rörelse krng masscentrum. poäng Lösnng: a. Antag att v har n partklar med massor m, m... m n med ortsvektorer r, r... r n. Det är ofta bekvämt att skrva ortsvektorn för partkeln som r = r cm + r, 47 och v kan också skrva hastgheten som v = v cm + v. 48 6

7 V kan då skrva rörelsemängdsmomentet som L = r cm + r m v cm + v = r cm m v cm + r cm m v + r m v cm + r m v = r cm m v cm + r cm m v + m r v cm + r m v. 49 Här gäller att m r = m r r cm = m r mr cm = 0, 50 och på samma sätt m v = m v mv cm = 0. 5 Därför har v L = r cm mv cm + r m v, 5 där v har delat upp rörelsemängdsmomentet en del som är masscentrums rörelse banrörelsemängdsmoment och en del som är partklarnas rörelse krng masscentrum spnn. b. Systemets totala knetska energ är T = m v = m v = 0, så v har m v cm + v v cm + v = T = mv cm + m vcm + m v cm v + v cm m + v cm m v + m v. 54 Alltså är den knetska energn summan av masscentrums knetska energ och den knetska energn för partklarnas rörelser krng masscentrum. m v = m v. 7

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten 1 Torsdagen den 14 januari 2016, klockan 14 19 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 013-281157 Examinator

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2 Mekanik III Tentamen den 19 december 8 Skrivtid 5 tim De som klarat dugga räknar ej uppgift 1. 1. r mg/r m mg/r 9m/ En klots med en cylinderformad urgröpning med radie r glider på ett horisontellt, friktionsfritt

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Onsdagen den 13 januari 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6)

dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) 1 Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) Tidsderivata av en roterande vektor För en roterande vektor A, vars norm A är konstant, roterande runt vektorn ω gäller da = ω A. (1) dt Som

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t) Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt Uppgift 3.5 a) Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: Vi separerar variablerna: Vi kan nu integrera båda leden: dv v = k dv dt = kv dv v = kdt dt 1 v = kt + C där C är

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentamen i Mekanik I del 1 Statik och partikeldynamik TMME27 2016-10-24, kl 14.00-19.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE, TERF Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 16 augusti 2005, 14.00-18.00, V-huset Examinator: Martin Cederwall Jour: NN, tel. 772???? Tillåtna hjälpmedel: Physics

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Hjälpmedel: Examinator: Jourhavande lärare: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Physics Handbook, Beta, Lexikon, typgodkänd miniräknare

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Stela kroppens plana rörelse; kinetik

Stela kroppens plana rörelse; kinetik Kap 9 Stela kroppens plana rörelse; kinetik 9.1 Rotation kring fix axel 9. b) Funktionen B sinωt + C cosω t kan skrivas som A sin(ω t + ϕ), där A = B 2 + C 2 9.6 Frilägg hjulet och armen var för sig. Normalkraften

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 27 maj 2008, 08.30-12.30, V-huset Examinator: Martin Cederwall Jour: Per Salomonson, tel. 7723231 Tillåtna hjälpmedel:

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Påtvingad svängning SDOF

Påtvingad svängning SDOF F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

UPPSTÄLLDA SAMBAND SKALL MOTIVERAS (gärna med en enkel skiss). Uppgifterna är inte avsiktligt ordnade efter hur svåra de är.

UPPSTÄLLDA SAMBAND SKALL MOTIVERAS (gärna med en enkel skiss). Uppgifterna är inte avsiktligt ordnade efter hur svåra de är. GÖTEBORGS UNIVERSITET Institutionen för Fysik och teknisk fysik LÖSNINGAR TILL TENTAMEN I FYP34 TILLÄMPAD FOURIERANALYS Tid: Lördag 9 apri 8, k 8 3 3 3 Pats: V Ansvarig ärare: Uf Torkesson, te. 3-77 336

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan 1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,

Läs mer

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem Institutionen för Mekanik Nichoas paidis te: 79 748 epost: nap@mech.kth.se hemsida: http://www.mech.kth.se/~nap/ Institutionen för Mekanik Erik Lindborg te: 79 7583 epost: erik@mech.kth.se Tentamen i SG4

Läs mer

x(t) =A cos(!t) sin(!t)

x(t) =A cos(!t) sin(!t) Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

STOCKE OLMS UNIVERSITET FYS IKUM

STOCKE OLMS UNIVERSITET FYS IKUM STOCKE OLMS UNIVERSITET FYS IKUM Tciita.ncaisskrivnintg i Mckanik för FK2002 /Fk~ zoc~ -j Onsdagen den 5 januari 2011 kl. 9 14 Hjälpmedel: Miniriiknare och formelsamling. Varje problem ger maximall 4 poäng.

Läs mer

Dynamiken hos stela kroppar

Dynamiken hos stela kroppar Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Roterande obalans Kritiskt varvtal för roterande axlar

Roterande obalans Kritiskt varvtal för roterande axlar Roterande obalans Kritiskt varvtal för roterande axlar Rotation, krit. varvtal, s 1 m 0 Roterande obalans e Modeller för roterande maskiner ej fullständigt utbalanserade t ex tvättmaskiner, motorer, verkstadsmaskiner

Läs mer

Mekanik 2 f or F Obligatorisk del

Mekanik 2 f or F Obligatorisk del Tentamen i Mekanik 2 för F, FFM521 och FFM520 Tisdagen 15 apri 2015, 8.30 12.30 Examinator: Martin Cederwa Jour: Martin Cederwa, ankn. 3181, besöker tentamenssaarna c:a k. 9.30 och 11.30. Tiåtna hjäpmede:

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik förf, del B Måndagen 12 januari 2004, 8.45-12.45, V-huset Examinator och jour: Martin Cederwall, tel. 7723181, 0733-500886 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer