dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6)

Storlek: px
Starta visningen från sidan:

Download "dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6)"

Transkript

1 1 Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) Tidsderivata av en roterande vektor För en roterande vektor A, vars norm A är konstant, roterande runt vektorn ω gäller da = ω A. (1) dt Som exempel kan vi betrakta lägesvektorn r. (Se fig.) Vi får här v = dr dt = ω r (2) ω r v = dr dt Rörelsemängdsmoment och rotation som vektorer I allmänhet kommer ej L att vara parallell med ω. Om ω delas upp i två komponenter, ω samt ω, kommer L att vara parallell med ω. (Se fig.) ω r ω ( L) ω Av Olof Karis

2 2 Detta leder till att L ej kan skrivas som en produkt av en skalär I gånger en roterande vektor ω. Vi måste i stället införa tröghetstensorn. Tröghetstensorn och rörelsemängdsmoment. Genom att införa tröghetstensorn, Ĩ, kan vi ge följande generella definition till rörelsemängdsmomentet L = Ĩ ω. (3) Tröghetstensorns komponenter defineras utgående från nedanstående ekvation Ĩ kl = j m j ( r 2 j δ kl r j,k r j,l ) k,l = x,y,z (4) Av definition framgår att Ĩ kl = Ĩ lk, vilket betyder att tensorn är symmetrisk. Den kan representeras som en 3 3 matris, där endast 6 komponenter är oberoende p.g.a. symmetrivillkor. Ekvation (4) kan vara lite svår att tolka. Låt oss därför explicit skriva ut x- komponenterna av tensorn. Vi får Ĩ xx = j ( m j y 2 j +zj 2 ) (5) Ĩ xy = j m j (x j y j ) (6) Ĩ xz = j m j (x j z j ) (7) (8) Övriga komponenter fås genom att permutera index, samt utnyttjande av symmetriegenskaper. För ett visst val av axlar, principalaxlarna, är tröghetstensorn diagonal. Med hjälp av linjär algebra är det inte svårt att visa att det alltid går att hitta ett sådant system. (Jmf. ortogonala transformationer och diagonalisering av matriser.) För principalsystemet har vi följande enkla utseende av Ĩ Ĩ ll = j m j ρ 2 j l = x,y,z (9) Vi får t.ex. Ĩ xx = j ( m j y 2 j +zj 2 ) (10) Med ovanstående definitioner av tröghetstensorn kan vi också generalisera några uttryck vi kommit i kontakt med tidigare. Av Olof Karis

3 3 Rörelsemängdsmoment L = Ĩ ω (11) Rotationsenergi E k = 1 2 ω Ĩ ω = 1 ω L (12) 2 Vidare kan följande relationer vara användbara Gyroskopapproximationen För ett gyro som precesserar med vinkelhastighet Ω samt har en vinkelhastighet ω s förknippad med dess rotation kring CM, gör vi följande approximation Ω ω s (13) Precession Ω = τ L s = mgr I 0 ω s (14) Av Olof Karis

4 Kapitel Ett barn snurrar en parallellepipedisk klots kring en axel som går längs den längsta kanten på klotsen. Vinkelhastigheten ω är 2.3 radianer/s. Hur stor är hastigheten för det hörn som är märkt A i figuren. ω 2.0 cm 1.0 cm A Svar: 5.1 cm/s. 4.0 cm 6.2 Vilken hastighet (i förhållande till ett system där jordens medelpunkt är fix och riktningarna till fixstjärnorna är konstanta) har Uppsala om vi antar att latituden är 60 grader? Svar: 0,23 km/s 6.3 Ett litet barn gör en snurra av en plåtburk och en blyertspenna. Se figur. Pennans massa är försumbar i förhållande till plåtburkens massa som är 79 g. Plåten är homogen och lika tjock över allt. Barnet sätter igång snurran med en rotationshastighet av 30 varv per sekund Hur stor blir precessionshastigheten? 4 cm 5 cm 10 cm 3 cm Svar: 3.9 rad/s 44

5 6.4 Ett leksaksgyroskop har massan 150 g och tröghetsmomentet kring dess rotationsaxel är 1500 g cm 2. Upphängningsanordningens massa är 30 g. Gyroskopet är fritt rörligt runt en upphängningspunkt, se figur. Gyroskopets masscentrum ligger 4 cm från upphängningspunkten, och det precesserar i horisontalplanet med omloppstiden 6 s. a) Bestäm den uppåtriktade kraften på gyroskopets upphängningspunkt. b) Bestäm gyrots spinnvinkelfrekvens, uttryckt i varv/min. c) Rita gyrot i en figur och ange gyrots rörelsemängdsmoment och kraftmomentet på gyrot som vektorer i figuren. Svar: a) 1,8 N b) 4, varv/min Ett sätt att stabilisera en båts rörelse är att utnyttja ett gyroskop. Ett sådant gyroskop är stort, består av en massiv cylindrisk skiva och har massan 50 ton och en radie på 2,0 m. Det roterar kring en vertikal axel med maximala rotationshastigheten 900 varv/minut. a) Hur lång tid åtgår för att få upp gyrot till maximala hastigheten om det startar från vila och motorn som driver gyrot har en utgående effekt på 100 hk? b) Bestäm det kraftmoment som krävs för att få gyrot att precessera i det vertikalplan plan som skär stäven och aktern med precessionsvinkelhastigheten 1,0 grader/s. Svar: a) 1 timme 41 min b) 1, Nm 45

6 6.6 En kurslektor på Fysikum använder ett cykelhjul för att demonstrera hur rörelsemängdsmomentet beror av kraftmomenten. Cykelhjulet har en diameter på 1,0 m. Hon har gjort periferin mycket tyngre än resten av hjulet genom att linda hjulets skena med bly. Hjulet väger således hela 5,0 kg och hela vikten kan antas ligga i periferin. Hjulets axel har försetts med två handtag som sticker ut 0,20 m åt vardera hållet. Lektorn håller axeln horisontellt med en hand på vardera handtaget och ger det en rotationshastighet av 5,0 varv/s. Bestäm storleken och riktningen på den kraft som kurslektorns respektive hand utövar på handtagen i följande situationer: a) Hjulaxeln och handtagen är båda i vila. b) Kurslektorn vrider hjulaxeln horisontellt runt hjulets centrum med rotationshastigheten 0,020 varv/s. c) Samma rörelse som i b) men med rotationshastigheten 0,20 varv /s. d) Hur snabbt måste hjulaxeln vridas horisontellt kring sitt centrum för att det skall vara möjligt att hålla hjulet med enbart en hand? Svar: a) +24 N från vardera handen, (pos. riktning = kraften riktad uppåt) b) 12 N resp. 37 N c) -99 N resp. 148 N d) 0,040 varv/s Cylindern i figuren nedan har massan M. Bestäm tröghetstensorn med avseende på origo i det inritade xyz systemet. z R R R y x 46

7 7 12 MR Svar: 0 12 MR MR Ett gyroskophjul är fastsatt i ena änden av en axel med längden l. Axelns andra ände är upphängt i ett snöre som har längden L. Gyroskopet sätts i rotation och undergår likformig precession i ett horisontalplan. Spinnvinkelhastigheten är ω s. Bestäm den vinkel β som snöret bildar med lodlinjen under förutsättning att snörets och axelns massa kan försummas. Gyrot har tröghetsmomentet I 0 kring rotationsaxeln. Svar: β= M 2 gl 3 I 0 2 ω s 2 M 2 gl 2 L 6.9 En gammal kvarn består av ett cylinderformat homogent kvarnhjul med massan M och tjockleken w och radien b som rullar i en cirkelformad bana med radien R och vinkelhastighet Ω mot ett plant underlag. Se figuren. På grund av att kvarnhjulets rörelsemängdsmoment inte är konstant till sin riktning kommer normalkraften från underlaget på kvarnhjulet att vara betydligt större än vad som skulle vara fallet om hjulet stod stilla. Beräkna normalkraften på kvarnhjulet under förutsättning att hjulet rullar utan att glida, att hjulet är fastsatt så att det inte kan vicka och att hjulets tjocklek w<<b, dvs att det kan betraktas som en tunn skiva. Försumma även friktionen. 47

8 w Ω b R Svar: N = Mg + MbΩ Om man försöker att rulla ett mynt på bordet så upptäcker man snart att man kan få myntet att rulla i en cirkel, men myntet måste då luta inåt, så att dess rotationsaxel inte är horisontell, se figuren. Antag att myntet har radien b, att det rullar utan att glida i en cirkel med radien R med hastigheten v. Under förutsättning att R>>b: Vilken vinkel Φ bildar myntets rotationsaxel mot horisontalplanet? v b Φ R Svar: tan Φ = 3v 2 2gR 48

9 6.11 Förr i tiden lekte barn med tunnband. Antag att ett tunnband har massan M och radien b och rullar rakt framåt med farten v utan att glida på ett plant underlag. Barnet slår till bandet på dess översta punkt i en riktning som är vinkelrät mot bandets rörelse. Barnet lyckas överföra impulsen I. a) Visa att detta medför att bandets bana avböjs med en vinkel Φ=I/Mv, förutsatt att gyroskopapproximationen kan användas och att friktionen mot gör att bandet hela tiden rullar utan att glida. b) Visa att gyroskopapproximationen är tillämpbar förutsatt att F << Mv 2 b, där F= den maximala stötkraften under stötförloppet Beräkna tröghetstensorn för den tunna kvadratiska plattan med massan M och kantlinjen a i figuren: y a a z x Svar: Ma En vanlig magnetisk kompass visar riktningen mot den s.k. magnetiska nordpolen, som dels inte sammanfaller med den verkliga och som dels pga lokala fält har betydande missvisning. En gyrokompass är ett instrument som däremot visar riktningen mot nordpolen. En gyrokompass består av en gyroskiva som roterar mycket snabbt och som är lagrad så att axeln kan röra sig fritt i ett horisontalplan. Se figuren 49

10 ω s Visa att gyrots axel kommer att oscillera kring nord-sydriktningen med en oscillationsfrekvens som ges av: ω osc = I 1 ω s Ω e I 2 där I 1 är gyrots tröghetsmoment kring rotationsaxeln, I 2 är tröghetsmomentet för gyrot kring en axel vertikal mot rotationsaxeln som går genom gyrots mittpunkt. Ω e är jordrotationsvinkelhastigheten samt ω s är gyrots spinn rotationsvinkelhastighet. (Resultatet innebär att om gyrot utsätts för friktion i rörelsen runt den vertikala axeln så kommer rotationsaxeln att småningom riktas i nord syd riktningen.) 50

11 6.14 Antag att en rät homogen cylinder med massan M och radien R och höjden h=2r får rotera med en vinkelhastighet ω = 8 r/s kring en axel i xz planet som är riktad 45 grader mot x-axeln i första kvadranten. Se figur. Bestäm rörelsemängdsmomentets komponenter med avseende på principalaxlarna xyz! z 45 o y x Svar: L = ( 7 6,0,1)MR 2 51

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Stelkroppsmekanik partiklar med fixa positioner relativt varandra Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

LÖSNINGAR TENTAMEN MEKANIK II 1FA102

LÖSNINGAR TENTAMEN MEKANIK II 1FA102 LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Arbete och effekt vid rotation

Arbete och effekt vid rotation ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z ) 1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297 Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan. Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har

Läs mer

Ordinarie tentamen i Mekanik 2 (FFM521)

Ordinarie tentamen i Mekanik 2 (FFM521) Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 4

LEDNINGAR TILL PROBLEM I KAPITEL 4 LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten 1 Torsdagen den 14 januari 2016, klockan 14 19 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 013-281157 Examinator

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Övningar för finalister i Wallenbergs fysikpris

Övningar för finalister i Wallenbergs fysikpris Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521) Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen

Läs mer

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A 1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet

Läs mer

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs 1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik förf, del B Måndagen 12 januari 2004, 8.45-12.45, V-huset Examinator och jour: Martin Cederwall, tel. 7723181, 0733-500886 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Kursinformation Mekanik f.k. TMMI39

Kursinformation Mekanik f.k. TMMI39 Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,

Läs mer

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse .4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk

Läs mer

Mekanik KF, Moment 2. o Ingenting händer: T! = T! o Den blir kortare: T! =!! o Den blir längre: T! = 2T!

Mekanik KF, Moment 2. o Ingenting händer: T! = T! o Den blir kortare: T! =!! o Den blir längre: T! = 2T! Mekanik KF, Moment 2 Datum: 2013-03-18, 8-13 Författare: Jan-Erik Rubensson Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna

Läs mer

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB . Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse

Läs mer

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN 10-08-28 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 09.00-14.00 Hjälpmedel:

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svar på de sex deluppgifterna: SFF SFS.

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Tentamen i Mekanik för D, TFYY68

Tentamen i Mekanik för D, TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics

Läs mer

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Ordinarie tentamen i Mekanik 2 (FFM521)

Ordinarie tentamen i Mekanik 2 (FFM521) Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 2 juni 2017 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Godkänd minikräknare och Matte Beta Examinator: Stellan Östlund Jour: Stellan

Läs mer

Mekanik F, del 2 (FFM521)

Mekanik F, del 2 (FFM521) Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

Roterande obalans Kritiskt varvtal för roterande axlar

Roterande obalans Kritiskt varvtal för roterande axlar Roterande obalans Kritiskt varvtal för roterande axlar Rotation, krit. varvtal, s 1 m 0 Roterande obalans e Modeller för roterande maskiner ej fullständigt utbalanserade t ex tvättmaskiner, motorer, verkstadsmaskiner

Läs mer

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Introhäfte Fysik II. för. Teknisk bastermin ht 2018 Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 7 januari 2012 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:

YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp: UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

I Bedford-Fowler, som var kursbok för Mekanik II ges en utförlig beskrivning vad vi menar med en stel kropp. Här tar vi ut två viktiga punkter.

I Bedford-Fowler, som var kursbok för Mekanik II ges en utförlig beskrivning vad vi menar med en stel kropp. Här tar vi ut två viktiga punkter. . Stel kropps allmänna rörelse. Inledning. Repetera gärna partikelsystems mekanik genom att läsa. kapitel 9. Där ges en excellent samlad repetition av partikelsystems dynamik Se särskilt sid 9-4 och punkterna

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2 Mekanik III Tentamen den 19 december 8 Skrivtid 5 tim De som klarat dugga räknar ej uppgift 1. 1. r mg/r m mg/r 9m/ En klots med en cylinderformad urgröpning med radie r glider på ett horisontellt, friktionsfritt

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 29 maj 2007, 08.30-12.30, V-huset Examinator: Martin Cederwall Jour: Per Salomonson, tel. 7723231 Tillåtna hjälpmedel:

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot 1 Föreäsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap 3113 Komihåg 8: Tröghetsmoment = r dm = x + y dm m m Kinetisk energi för roterande stet system: T rot = 1 Röresemängdsmomentets zkomponent:

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

Komihåg 5: ( ) + " # " # r BA Accelerationsanalys i planet: a A. = a B. + " # r BA

Komihåg 5: ( ) +  #  # r BA Accelerationsanalys i planet: a A. = a B. +  # r BA 1 Föreläsning 6: Relativ rörelse (kap 215 216) Komihåg 5: ( ) Accelerationssamb: a A = a B + " # r BA + " # " # r BA Accelerationsanalys i planet: a A = a B " d BA # 2 e r + d BA # e # Rullning på plan

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

STOCKE OLMS UNIVERSITET FYS IKUM

STOCKE OLMS UNIVERSITET FYS IKUM STOCKE OLMS UNIVERSITET FYS IKUM Tciita.ncaisskrivnintg i Mckanik för FK2002 /Fk~ zoc~ -j Onsdagen den 5 januari 2011 kl. 9 14 Hjälpmedel: Miniriiknare och formelsamling. Varje problem ger maximall 4 poäng.

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Vektorer och rörelse 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur

Läs mer

KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA 1 KOMIHÅG 3: --------------------------------- Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av

Läs mer

Vrid och vänd en rörande historia

Vrid och vänd en rörande historia Vrid och vänd en rörande historia Den lilla bilden nederst på s 68 visar en låda. Men vad finns i den? Om man vrider den vänstra pinnen, så rör sig den högra åt sidan. Titta på pilarna! Problemet har mer

Läs mer