Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse"

Transkript

1 Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment (angular momentum) och hur kraftmoment (torque) och tröghetsmoment (moment of inertia) hänger ihop. Detta genom att undersöka momentlagen, att jämför uppmätt och beräknat tröghetsmoment för en stel kropp samt undersöka om rörelsemängdsmomentet resp. rotationsenergin bevaras vid en rotationskollision och i en ballistisk pendel. Inledning: För translationsrörelse (en punkts rörelse längs en linje) har vi i tidigare laborationer undersökt t.ex. hur sådan rörelse beskrivs (kinematik) och hur vi använder rörelsekonstanter (t.ex. mekaniska energin, rörelsemängden) för att kunna beskriva rörelse. I den här laborationen kommer vi att undersöka motsvarigheter för dessa begrepp i roterande system. Mål: Använda momentlagen för att beskriva roterande system. Kunna analysera rotationsrörelse med konstant vinkelacceleration. Kunna beskriva kollisioner m.h.a. begreppet rörelsemängdsmoment. Kunna analysera kollisioner av olika typer: elastiska, inelastiska och fullständigt inelastiska. Använda rörelsekonstanter för att analysera mekaniska förlopp i rotationsrörelse.. Kunna författa en rapport över ert arbete. Förberedande uppgifter: Dessa uppgifter skall redovisas i början på laborationen gruppvis. Vid laborationstillfället så kommer ni (gruppen) få reda på vilken av uppgifterna ni skall presentera för de andra alltså måste ni lösa samtliga uppgifter. Svaren för de jämna uppgifterna presenterade nedan, det viktiga är lösningarna och hur ni angriper problemet; för udda problem finns svar i boken (University Physics). Om ni inte har förberett er så kommer ni att få göra laborationen vid uppsamlingstillfället i Juni. 9.32!! Svar: a) 1/2*ml 2! b) 11/16*ml 2! 9.80!! Svar:! kg*m !! Svar:!a) 13.2 m, b) 8.04 m/s 9.83!! se t.h.! 9.84!! 2.65 m/s 10.2!! 28.0 Nm medsols 10.8!! 2.56 Nm motsols! b) 4.25 Nm 10.10!! a) m/s,! b) 4.06 m/s !! Svar i boken: a) 2.00 rad/s, b) 6.58 rad/s Sista förberedande övningen: Läs igenom alla försöken och förklara kort hur de skall utföras och med vilka samband ni har tänkt att analysera förloppen med.! Sida 1/8

2 Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Experimentuppställning 1 I detta försök skall skivan i rotationsuppställningen vara så horisontell som möjligt (mer om kalibrering nedan). Värt att notera är att hjulet bör ha en liten vinkel så att snöret löper som på detaljbilden till höger ovan. På plastskivan kan t.ex. en aluminiumskiva eller en stång med vikter sättas. Laborationsassistenterna kommer att visa er hur ni ska sätta in samplingsfrekvensen på handdatorn som mäter vinkelacceleration/vinkelhastighet. Försöksuppställningen måste kalibreras så att skivan är horisontell. Detta kan göras genom att sätta en metallring mot ena kanten av skivan (fig. t.h.) och mäta vinkelhastigheten. Om uppställningen är korrekt kalibrerad kommer hastigheten att öka som en linje (nedan t.v.), är skivan inte plan kommer hastigheten att variera periodiskt (nedan t.h.). Om ni behöver justera kalibreringen får ni justera trefotens justerskruvar och göra en ny mätning tills grafen är så lik en linje som möjligt. När ni är nöjda kan ni börja med uppgift 1 nedan.! Sida 2/8

3 Uppgift 1 Bestämning av tröghetsmoment m.h.a. momentlagen. Med en kalibrerad utrustning enligt ovan och handdatorn inställd på vinkelacceleration. Vill ni inte sätta tillbaka snöret hela tiden kan ni sätta fast det enligt figuren till höger. Målet med försöket är att bestämma tröghetsmomentet hos en metallring experimentellt och jämföra detta med ett uträknat tröghetsmoment (där ni använder våg och skjutmått för att bestämma parametrarna till tröghetsmomentet). För att bestämma tröghetsmomentet experimentellt så går det att mäta skillnaden i vinkelacceleration med och utan metallring enligt bilderna. Ni måste med andra ord göra minst två försök! Rita en figur över ert försök där ni sätter ut relevanta krafter och kraftmoment. Iexp= [ ] M= [ ] R1= [ ] R2= [ ] Iteor= [ ] I rapporten skall ni redovisa graferna från de två försöken och kommentera hur väl det uppmätta resultatet som ni får med momentlagen överensstämmer med det ni fått med en formel för tröghetsmomentet + våg och skjutmått.! Sida 3/8

4 Uppgift 2 Tröghetsmoment för roterande punktmassor Om ni tar bort aluminiumskivan kan ni istället skruva fast en stav, enligt bilden ovan, där två tyngder kan placeras på var sin sida om mitten. Starta varje försök från vila. Genom att placera vikterna successivt närmare mitten får ni ett antal olika kombinationer av tröghetsmoment och vinkelaccelerationer (mät minst tre kombinationer). Beräkna tröghetsmomentet för två punktmassor på avstånden från centrum som ni valt och jämför med era värden. Kan stavens tröghetsmoment försummas? Kom ihåg att mäta relevanta avstånd och vikter hörande till varje försök. Är snörspänningen konstant när ni varierar tröghetsmomentet? Tänk tillbaka på ert första försök med magnetbromsen. Hur måste det bromsande momentet från interaktionen mellan magnet och metall varit riktat (och hur stort) för att gränshastigheten skall ha blivit konstant? Rita en figur med krafter och moment. Uppgift 3 Bevaras rörelsemängdsmomentet och rotationsenergin vid en rotationskollision? Ta nu bort snöret från skivan och sätt dit aluminiumskivan igen. Ni kan sätta igång den med handkraft och påbörja en mätning. Släpp sedan metallringen från så låg höjd som möjligt. Låt ring +skiva rotera tillsammans innan ni avslutar mätningen. Det är så gott som omöjligt att släppa ringen helt centrumsymmetriskt på skivan. Det kan ni enkelt avhjälpa genom att avvända Steiners sats (parallellaxelteoremet), med hjälp av denna kan ni beskriva ett tröghetsmoment kring en godtycklig punkt på ett givet avstånd från masscentrum. Till höger ser ni ett exempel på skivan ovanifrån där ringens centrum är tydligt skiftat från aluminiumskivans mitt. Genom att avläsa vinkelhastigheten omedelbart före och direkt efter stöten så kan ni beräkna rörelsemängdsmomentet och! Sida 4/8

5 rotationsenergin före och efter kollisionen. Ni måste använda Steiners sats för att få rätt tröghetsmoment i beräkningarna. Redovisa era beräkningar av tröghetsmomentet, kom ihåg att skriva ner uppmätta värden på radier, vikter och avstånd: Itot= [ ] Lföre= [ ] Lefter= [ ] Ekin_före= [ ] Ekin_efter= [ ] Bevaras rörelsemängdsmomentet i stöten? Bevaras rörelseenergin i stöten? Vilken typ av stöt är det fråga om? (elastisk, inelastisk, fullständigt inelastisk) I rapporten skall ni redovisa grafen från försöket.! Sida 5/8

6 Ballistisk pendel Bilden nedan visar en ballistisk pendel som använts för att testa sprängämnen för gruvdrift 1. För att mäta energiinnehållet i en given mängd sprängämne måste rörelsemängdsmomentets bevarande, rörelsemängdens bevarande och den mekaniska energins bevarande tas i beaktande. Eftersom vår uppställning har luftgeväret fast monterat så har inte denna komponent någon hastighet efter stöten något som förenklar vårt problem (gruvingenjörerna på 1910 talet var tvungna att mäta vagnens hastighet också). I vårt fall så fastnar kulan i pendeln varpå pendeln svänger upp. Med hjälp av metodiken utlagd i exempel i Young and Freedman får vi ett uttryck för den kinetiska energin efter stöten. I den här laborationen skall vi titta närmare på parallellaxelteoremet (Steiners sats) och förutsättningar för rörelsemängdens bevarande. Regler för skjutandet: Bli inte träffade av kulan. D.v.s. håll er undan och varna andra när ni ska skjuta. Sikta med för ändamålet avsedd siktstång (labbassistenterna visar er) Alla i rummet skall ha skyddsglasögon på när ni avfyrar geväret, ni har ansvaret att tillse att detta är fallet innan ni skjuter. Påstående 1: Rörelsemängdsmomentet är bevarat i stötögonblicket när pendeln hänger rakt ner. För att detta skall vara sant måste alla yttre moment M som verkar på systemet vara noll i stötögonblicket. v m M Uppgift 1: Hur väljs mg momentpunkt så att r, en vektor från momentpunkten till där kraften griper an, gör att endast F2 blir ett inre moment i systemet kula+pendel? Uppgift 2: a.) Med hjälp av våg och linjal kan ni idealisera pendeln till att bestå av ett lodrätt cylindriskt skal I1 och en vågrätt cylinder på avståndet R (från upphängningspunkten!) I2 som pusslats ihop (den lilla biten som sticker upp ovanför upphängningspunkten I3 kan ni F 1 N d F 2 R d h 1 Sida 6/8

7 ignorera om ni vill). Räkna ut det totala tröghetsmomentet för pendeln kring upphängningspunkten. Det totala tröghetsmomentet är summan av de ingående tröghetsmomenten. Steiners sats kommer också att behövas. Fyll i detta nedan tillsammans med enheten. Itot= [ ] b.) Med hjälp av ett uppmätt värde för periodtiden (tiden det tar för pendeln att gå fram och tillbaka) för pendeln bestäm ett värde för pendelns tröghetsmoment. Notera att d i formeln nedan är avståndet från upphängningspunkten till pendelns masscentrum, lilla m i formeln är summan av pilens och pendelns massor. Itot= [ ] T =2π I O mgd Ändras frekvensen även om utslagets storlek (amplituden) ändras med tiden? Påstående 2: energin bevaras efter stöten. Detta är sant alltid, men pendeln stannar förr eller senare p.g.a. att vi har friktion i lagren, luftmotstånd etc. som resulterar i dämpande moment. För att skapa en bild av hur snabbt rörelsen dämpas kan vi beskriva hur mycket av energin som läcker ut ur systemet per tidsenhet. Toppamplituden avtar som en exponentialfunktion, detta kommer vi att titta närmare på i laboration 4. Uppgift 4: För att kunna lösa problemet med kulans hastighet kan vi göra approximationen att mycket lite energi läcker ut ur systemet från stöten till det första (maximala) utslaget. Med hjälp av rörelsemängdsmomentets bevarande under och energins bevarande efter stöten kan ni skapa ett uttryck för pilens fart som funktion av pendelns utslag (och konstanter som n mäter), skriv ner detta uttryck: vad får ni för fart för pilen? vp= [m/s] Sida 7/8

8 Tröghetsmoment/Moment of inertia [kgm 2 ] Kraftmoment(vridmoment)/torque Vinkelhastighet/angular velocity Vinkelacceleration/angular acceleration Rörelsemängdsmoment/angular momentum [Nm] [rad/s] [rad/s 2 ] [kgm 2 rad/s] Rotationsenergi/rotational energy [kgm 2 rad 2 /s 2 ]! Sida 8/8

Kollisioner, impuls, rörelsemängd kapitel 8

Kollisioner, impuls, rörelsemängd kapitel 8 Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Kollisioner, rörelsemängd, energi

Kollisioner, rörelsemängd, energi Kollisioner, rörelsemängd, energi I denna laboration kommer ni att undersöka kollisioner, rörelsemängd och energi, samt bekanta er ytterligare med GLX Xplorer som används i mekaniklabbet för utläsning

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

STOCKE OLMS UNIVERSITET FYS IKUM

STOCKE OLMS UNIVERSITET FYS IKUM STOCKE OLMS UNIVERSITET FYS IKUM Tciita.ncaisskrivnintg i Mckanik för FK2002 /Fk~ zoc~ -j Onsdagen den 5 januari 2011 kl. 9 14 Hjälpmedel: Miniriiknare och formelsamling. Varje problem ger maximall 4 poäng.

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik

Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

Harmonisk svängningsrörelse

Harmonisk svängningsrörelse Institutionen för Fysik och Astronomi Mekanik HI: 214 Harmonisk svängningsrörelse I den här laborationen kommer vi att titta på svängningsrörelse med olika egenskaper: fri odämpad, fri dämpad och tvungen

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs - Laboration 5. Bevarande av energi och rörelsemängd. Undersökning av kollisioner

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs - Laboration 5. Bevarande av energi och rörelsemängd. Undersökning av kollisioner INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs - Laboration 5 Bevarande av energi och rörelsemängd Undersökning av kollisioner Instruktioner Om laborationen: - Arbeta i grupper om 2 till 3 personer.

Läs mer

Övningar för finalister i Wallenbergs fysikpris

Övningar för finalister i Wallenbergs fysikpris Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

1. Stela kroppars mekanik

1. Stela kroppars mekanik 1. Stela kroppars mekanik L1 Med en stel kropp menas ett föremål som inte böjer sig eller viker sig på något sätt. (Behandlingen av icke stela kroppar hör inte till gymnasiekursen) 1.1 Kraftmoment, M Ett

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15.

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15. (6) Bakgrnd Datorsimleringsppgift i Mekanik I del, Ht 0 Stela Kroppens Dynamik (TMME8) Rlle på Cylinder Deadline för inlämning: 0--09, kl 5.00 I ppgiften skall d ställa pp rörelseekvationerna för ett mekaniskt

Läs mer

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2

Mekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2 Mekanik III Tentamen den 19 december 8 Skrivtid 5 tim De som klarat dugga räknar ej uppgift 1. 1. r mg/r m mg/r 9m/ En klots med en cylinderformad urgröpning med radie r glider på ett horisontellt, friktionsfritt

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Mekanik KF, Moment 1 Del 1 (Lämna in denna del med dina svar) Skriv provkod el. namn o personnummer på varje blad Flera alternativ kan vara rätt.

Mekanik KF, Moment 1 Del 1 (Lämna in denna del med dina svar) Skriv provkod el. namn o personnummer på varje blad Flera alternativ kan vara rätt. Mekanik KF, Moment 1 Datum: 2012-12-03 Författare: Lennart Selander Hjälpmedel: Physics handbook, Beta Mathematics handbook, Valfri formelsamling, tabellverk, Kompendium Centrala samband, Pennor, linjal,

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

Laboration: Krafter och Newtons lagar

Laboration: Krafter och Newtons lagar Institutionen för fysik och astronomi Laboration: Krafter och Newtons lagar Instruktionen består av två delar: 1. Laborationsinstruktion (detta häfte) 2. Svarshäfte Laborationsinstruktionen, detta häfte,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen

Läs mer

AKTIVITETER VID POWERPARK/HÄRMÄ

AKTIVITETER VID POWERPARK/HÄRMÄ AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter

Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter 1 Magnetiska poler Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter 1. Nämn fem saker som en magnet drar till sig. Alla metallföremål

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Mekanik FK2002m. Rotation

Mekanik FK2002m. Rotation Mekanik FK2002m Föreläsning 9 Rotation 2013-09-20 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 9 Introduktion Idag ska vi börja titta på rotation. - Stela kroppar som roterar kring en fix rotationsaxel.

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik förf, del B Måndagen 12 januari 2004, 8.45-12.45, V-huset Examinator och jour: Martin Cederwall, tel. 7723181, 0733-500886 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

E-II. Diffraktion på grund av ytspänningsvågor på vatten

E-II. Diffraktion på grund av ytspänningsvågor på vatten Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande

Läs mer

Stela kroppens plana rörelse; kinetik

Stela kroppens plana rörelse; kinetik Kap 9 Stela kroppens plana rörelse; kinetik 9.1 Rotation kring fix axel 9. b) Funktionen B sinωt + C cosω t kan skrivas som A sin(ω t + ϕ), där A = B 2 + C 2 9.6 Frilägg hjulet och armen var för sig. Normalkraften

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt

Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt Uppgift 3.5 a) Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: Vi separerar variablerna: Vi kan nu integrera båda leden: dv v = k dv dt = kv dv v = kdt dt 1 v = kt + C där C är

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6)

dr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) 1 Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) Tidsderivata av en roterande vektor För en roterande vektor A, vars norm A är konstant, roterande runt vektorn ω gäller da = ω A. (1) dt Som

Läs mer

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Kanonen liknar inte en vanlig berg- och dalbana. Uppdraget- den långa backen där berg- och dalbanetåg sakta dras upp - har ersatts med en hydraulisk utskjutning.

Läs mer

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen Chalmers Teknisk fysik Teknisk matematik Arkitektur och teknik Matematik- och fysikprovet 2009 Fysikdelen Provtid: 2h. Hjälpmedel: inga. På sista sidan finns en lista över fysikaliska konstanter som eventuellt

Läs mer

Till Kursen MEKANIK MSGB21

Till Kursen MEKANIK MSGB21 Välkommen! Till Kursen MEKANIK MSGB21 Kursansvar: Hans Johansson 21F226 Föreläsningar: Hans Johansson & Anders Gåård Övningar: Anders Gåård 21F229 Mikael Åsberg 21D209 Hans Johansson 21F226 Sekreterare:

Läs mer

Basåret, Fysik 2 25 februari 2014 Lars Bergström

Basåret, Fysik 2 25 februari 2014 Lars Bergström Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297 Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda

Läs mer